DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation
- URL: http://arxiv.org/abs/2506.17874v2
- Date: Tue, 24 Jun 2025 21:04:53 GMT
- Title: DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation
- Authors: Jiaming Hu, Debarghya Mukherjee, Ioannis Ch. Paschalidis,
- Abstract summary: We introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization with various data augmentation strategies.<n>Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios.<n>On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function.
- Score: 13.764572786186879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world applications, ensuring the robustness and stability of deep neural networks (DNNs) is crucial, particularly for image classification tasks that encounter various input perturbations. While data augmentation techniques have been widely adopted to enhance the resilience of a trained model against such perturbations, there remains significant room for improvement in robustness against corrupted data and adversarial attacks simultaneously. To address this challenge, we introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization (W-DRO) with various data augmentation strategies to improve the robustness of the models significantly across a broad spectrum of corruptions. Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios while maintaining the accuracy on the clean datasets on a range of benchmark datasets, including but not limited to CIFAR-10-C, CIFAR-100-C, MNIST, and Fashion-MNIST. On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function closely related to the W-DRO problem.
Related papers
- Distributionally Robust Optimization with Adversarial Data Contamination [36.409282287280185]
We focus on optimizing Wasserstein-1 DRO objectives for generalized linear models with convex Lipschitz loss functions.<n>Our primary contribution lies in a novel modeling framework that integrates robustness against training data contamination with robustness against distributional shifts.<n>This work establishes the first rigorous guarantees, supported by efficient computation, for learning under the dual challenges of data contamination and distributional shifts.
arXiv Detail & Related papers (2025-07-14T18:34:10Z) - Distributionally Robust Federated Learning with Client Drift Minimization [35.08453461129848]
textitDRDM is a distributionally robust optimization framework with dynamic regularization to mitigate client drift.<n>textitDRDM frames the training as a min-max optimization problem aimed at maximizing performance for the worst-case client.<n>Experiments show that textitDRDM significantly improves worst-case test accuracy while requiring fewer communication rounds.
arXiv Detail & Related papers (2025-05-21T11:05:56Z) - Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance [7.8973037023478785]
Federated Learning (FL) is a potential solution to data privacy challenges in distributed machine learning.<n>FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates.<n>This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in high-dimensional settings.
arXiv Detail & Related papers (2025-03-27T08:07:39Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
We explore the concept of Lipschitz continuity to certify the robustness of deep neural networks (DNNs) against adversarial attacks.
We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness.
Our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
arXiv Detail & Related papers (2024-06-28T03:10:36Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.