AdUE: Improving uncertainty estimation head for LoRA adapters in LLMs
- URL: http://arxiv.org/abs/2505.15443v1
- Date: Wed, 21 May 2025 12:23:40 GMT
- Title: AdUE: Improving uncertainty estimation head for LoRA adapters in LLMs
- Authors: Artem Zabolotnyi, Roman Makarov, Mile Mitrovic, Polina Proskura, Oleg Travkin, Roman Alferov, Alexey Zaytsev,
- Abstract summary: We introduce AdUE1, an efficient post-hoc uncertainty estimation (UE) method to enhance softmax-based estimates.<n>Our approach is lightweight (no base-model changes) and produces better-calibrated confidence.
- Score: 1.83270805462863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty estimation remains a critical challenge in adapting pre-trained language models to classification tasks, particularly under parameter-efficient fine-tuning approaches such as adapters. We introduce AdUE1, an efficient post-hoc uncertainty estimation (UE) method, to enhance softmax-based estimates. Our approach (1) uses a differentiable approximation of the maximum function and (2) applies additional regularization through L2-SP, anchoring the fine-tuned head weights and regularizing the model. Evaluations on five NLP classification datasets across four language models (RoBERTa, ELECTRA, LLaMA-2, Qwen) demonstrate that our method consistently outperforms established baselines such as Mahalanobis distance and softmax response. Our approach is lightweight (no base-model changes) and produces better-calibrated confidence.
Related papers
- LLaDA 1.5: Variance-Reduced Preference Optimization for Large Language Diffusion Models [76.8317443926908]
Masked Diffusion Models (MDMs) present a promising paradigm for language modeling.<n>The challenge arises from the high variance in Evidence Lower Bound (ELBO)-based likelihood estimates required for preference optimization.<n>We propose Variance-Reduced Preference Optimization (VRPO), a framework that formally analyzes the variance of ELBO estimators and derives on both the bias and variance of preference optimization gradients.
arXiv Detail & Related papers (2025-05-25T16:36:20Z) - Token-Efficient RL for LLM Reasoning [0.02488650627593658]
We propose reinforcement learning strategies tailored for reasoning in large language models (LLMs) under strict memory and compute limits.<n>Building on early policy gradient methods with baseline subtraction, we design critic-free methods that operate on a small, informative subset of output tokens.<n>We show that our methods raise accuracy on the SVAMP benchmark from 46% to over 70% and show strong performance on multi-digit multiplication.
arXiv Detail & Related papers (2025-04-29T14:58:43Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Predictor-Corrector Enhanced Transformers with Exponential Moving Average Coefficient Learning [73.73967342609603]
We introduce a predictor-corrector learning framework to minimize truncation errors.
We also propose an exponential moving average-based coefficient learning method to strengthen our higher-order predictor.
Our model surpasses a robust 3.8B DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters.
arXiv Detail & Related papers (2024-11-05T12:26:25Z) - Joint Training for Selective Prediction [5.662924503089369]
Selective Prediction methods determine when to adopt a classifier's output versus defer to a human.
One previous method involves learning a deferral model based on engineered features.
We introduce a novel joint-training approach that simultaneously optimize learned representations used by the classifier module and a learned deferral policy.
arXiv Detail & Related papers (2024-10-31T15:28:26Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - How to Fix a Broken Confidence Estimator: Evaluating Post-hoc Methods for Selective Classification with Deep Neural Networks [1.4502611532302039]
We show that a simple $p$-norm normalization of the logits, followed by taking the maximum logit as the confidence estimator, can lead to considerable gains in selective classification performance.
Our results are shown to be consistent under distribution shift.
arXiv Detail & Related papers (2023-05-24T18:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.