論文の概要: Deep Learning for Continuous-time Stochastic Control with Jumps
- arxiv url: http://arxiv.org/abs/2505.15602v1
- Date: Wed, 21 May 2025 14:57:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.713327
- Title: Deep Learning for Continuous-time Stochastic Control with Jumps
- Title(参考訳): ジャンプによる連続時間確率制御のための深層学習
- Authors: Patrick Cheridito, Jean-Loup Dupret, Donatien Hainaut,
- Abstract要約: 本研究では,ジャンプによる有限水平連続時間制御問題を解くためのモデルに基づくディープラーニング手法を提案する。
我々は2つのニューラルネットワークを反復的に訓練する: 1つは最適ポリシーを表現するもので、もう1つは値関数を近似するものである。
- 参考スコア(独自算出の注目度): 1.6112718683989882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a model-based deep-learning approach to solve finite-horizon continuous-time stochastic control problems with jumps. We iteratively train two neural networks: one to represent the optimal policy and the other to approximate the value function. Leveraging a continuous-time version of the dynamic programming principle, we derive two different training objectives based on the Hamilton-Jacobi-Bellman equation, ensuring that the networks capture the underlying stochastic dynamics. Empirical evaluations on different problems illustrate the accuracy and scalability of our approach, demonstrating its effectiveness in solving complex, high-dimensional stochastic control tasks.
- Abstract(参考訳): 本稿では,ジャンプによる有限水平連続時間確率制御問題を解くためのモデルに基づくディープラーニング手法を提案する。
我々は2つのニューラルネットワークを反復的に訓練する: 1つは最適ポリシーを表現するもので、もう1つは値関数を近似するものである。
動的プログラミング原理の連続的なバージョンを利用することで、ハミルトン・ヤコビ・ベルマン方程式に基づく2つの異なるトレーニング目標を導出し、ネットワークが基礎となる確率力学を捉えることを保証する。
異なる問題に対する実証的な評価は、我々のアプローチの正確さとスケーラビリティを示し、複雑で高次元の確率的制御タスクを解く上での有効性を実証する。
関連論文リスト
- Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
離散的な行動空間を持つ複雑な環境では、強化学習(RL)において効果的な意思決定が重要である
我々は、$n$アクションの集合全体を最適化するのとは対照的に、おそらく$mathcalO(log(n)$)$のような変数の集合のみを考える。
提示された値ベースのRL手法には、Q-learning、StochDQN、StochDDQNなどが含まれる。
論文 参考訳(メタデータ) (2024-05-16T17:58:44Z) - Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach [3.453622106101339]
本研究では,2つの相互に結びついた目的を達成するための枠組みを提案する。 (i) 積極的な探索と意図的な情報収集を伴う強化学習と, (ii) 最適制御法の計算的難易度を克服する枠組みである。
我々は、強化学習を用いて最適制御則を計算することにより、両方の目的にアプローチする。
一定の探索と搾取バランスとは異なり、学習プロセスが終了しても、警告と探索はリアルタイムでコントローラによって自動的に行われる。
論文 参考訳(メタデータ) (2023-09-18T18:05:35Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
時間差学習は, エージェントが訓練の初期段階において, 値関数の非平滑成分を適合させるのに役立つことを理論的に示す。
本研究では,高密度報酬タスクの時間差アルゴリズムを用いて学習したニューラルネットワークが,ランダムなネットワークや政策手法で学習した勾配ネットワークよりも,状態間の一般化が弱いことを示す。
論文 参考訳(メタデータ) (2022-06-05T08:49:16Z) - Almost Surely Stable Deep Dynamics [4.199844472131922]
本稿では,観測データから安定なディープニューラルネットワークに基づく動的モデルを学ぶ手法を提案する。
本手法は,lyapunovニューラルネットワークを動的モデルに組み込むことにより,本質的に安定性基準を満たす。
論文 参考訳(メタデータ) (2021-03-26T20:37:08Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
時間駆動学習は、新しいデータが到着すると予測モデルのパラメータを継続的に更新する機械学習手法を指す。
ノイズなどの重要なシステムイベントによる時間駆動型dHDPの更新を防止することが望ましい。
イベント駆動型dHDPアルゴリズムは,従来の時間駆動型dHDPと比較して動作することを示す。
論文 参考訳(メタデータ) (2020-06-16T05:51:25Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
本稿では,頑健な強化学習(RL)エージェントを訓練する難しい課題に取り組むために,サンプリング視点を導入する。
本稿では,2人プレイヤポリシー手法のサンプリング版である,スケーラブルな2人プレイヤRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-14T14:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。