論文の概要: Almost Surely Stable Deep Dynamics
- arxiv url: http://arxiv.org/abs/2103.14722v1
- Date: Fri, 26 Mar 2021 20:37:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 14:34:56.627196
- Title: Almost Surely Stable Deep Dynamics
- Title(参考訳): かなり安定したディープダイナミクス
- Authors: Nathan P. Lawrence, Philip D. Loewen, Michael G. Forbes, Johan U.
Backstr\"om, R. Bhushan Gopaluni
- Abstract要約: 本稿では,観測データから安定なディープニューラルネットワークに基づく動的モデルを学ぶ手法を提案する。
本手法は,lyapunovニューラルネットワークを動的モデルに組み込むことにより,本質的に安定性基準を満たす。
- 参考スコア(独自算出の注目度): 4.199844472131922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for learning provably stable deep neural network based
dynamic models from observed data. Specifically, we consider discrete-time
stochastic dynamic models, as they are of particular interest in practical
applications such as estimation and control. However, these aspects exacerbate
the challenge of guaranteeing stability. Our method works by embedding a
Lyapunov neural network into the dynamic model, thereby inherently satisfying
the stability criterion. To this end, we propose two approaches and apply them
in both the deterministic and stochastic settings: one exploits convexity of
the Lyapunov function, while the other enforces stability through an implicit
output layer. We demonstrate the utility of each approach through numerical
examples.
- Abstract(参考訳): 本稿では,観測データから安定なディープニューラルネットワークに基づく動的モデルを学ぶ手法を提案する。
特に, 離散時間確率力学モデルは, 推定や制御といった実用的応用に特に興味を持っていると考えられる。
しかし、これらの側面は安定性を保証するという課題を悪化させる。
本手法は,lyapunovニューラルネットワークを動的モデルに組み込むことにより,本質的に安定性基準を満たす。
そこで本稿では,リアプノフ関数の凸性を悪用し,一方は暗黙的な出力層を通じて安定性を強制する,という2つの手法を提案する。
数値例を通して各手法の有用性を示す。
関連論文リスト
- Stability-Certified Learning of Control Systems with Quadratic
Nonlinearities [9.599029891108229]
この研究は、主に低次元の力学モデルを構築することを目的とした演算子推論手法に焦点を当てている。
本研究の目的は,本質的な安定性を保証する2次制御力学系の推論を容易にする手法を開発することである。
論文 参考訳(メタデータ) (2024-03-01T16:26:47Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Stability of implicit neural networks for long-term forecasting in
dynamical systems [10.74610263406029]
我々は,このネットワークの予測における安定性を保証するためのスキームの安定性定義に基づく理論を開発する。
実験の結果, 安定性が検証され, 2つの輸送PDEの長期予測結果が得られた。
論文 参考訳(メタデータ) (2023-05-26T13:58:48Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Stability Preserving Data-driven Models With Latent Dynamics [0.0]
本稿では,潜在変数を用いた動的問題に対するデータ駆動型モデリング手法を提案する。
本稿では,結合力学の安定性を容易に適用できるモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-20T00:41:10Z) - Learning Stabilizable Deep Dynamics Models [1.75320459412718]
本稿では,入力-アフィン制御系のダイナミクスを学習するための新しい手法を提案する。
重要な特徴は、学習モデルの安定化コントローラと制御リャプノフ関数も得られることである。
提案手法はハミルトン-ヤコビ不等式の解法にも適用可能である。
論文 参考訳(メタデータ) (2022-03-18T03:09:24Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
我々は,世界規模で安定な非線形力学を学習できる新しいDeep生成モデルであるImitationFlowを紹介した。
提案手法の有効性を,標準データセットと実ロボット実験の両方で示す。
論文 参考訳(メタデータ) (2020-10-25T14:49:46Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。