論文の概要: On Dequantization of Supervised Quantum Machine Learning via Random Fourier Features
- arxiv url: http://arxiv.org/abs/2505.15902v1
- Date: Wed, 21 May 2025 18:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.847189
- Title: On Dequantization of Supervised Quantum Machine Learning via Random Fourier Features
- Title(参考訳): ランダムフーリエ特徴を用いた教師付き量子機械学習の定式化について
- Authors: Mehrad Sahebi, Alice Barthe, Yudai Suzuki, Zoë Holmes, Michele Grossi,
- Abstract要約: 古典的RFFモデルと回帰および分類タスクの量子モデルとの一般化性能ギャップを導出する。
我々の発見は、RFFに基づく量子化の適用可能性を広げるだけでなく、実用的な機械学習タスクにおける潜在的な量子アドバンテージの理解を深める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the quest for quantum advantage, a central question is under what conditions can classical algorithms achieve a performance comparable to quantum algorithms--a concept known as dequantization. Random Fourier features (RFFs) have demonstrated potential for dequantizing certain quantum neural networks (QNNs) applied to regression tasks, but their applicability to other learning problems and architectures remains unexplored. In this work, we derive bounds on the generalization performance gap between classical RFF models and quantum models for regression and classification tasks with both QNN and quantum kernel architectures. We support our findings with numerical experiments that illustrate the practical dequantization of existing quantum kernel-based methods. Our findings not only broaden the applicability of RFF-based dequantization but also enhance the understanding of potential quantum advantages in practical machine-learning tasks.
- Abstract(参考訳): 量子優位性の探求において、古典的アルゴリズムが量子アルゴリズムに匹敵する性能を達成できる条件(dequantization)はどのような条件下にあるかが中心的な問題である。
ランダムフーリエ機能(RFF)は、回帰タスクに適用される特定の量子ニューラルネットワーク(QNN)を復号化する可能性を示しているが、他の学習問題やアーキテクチャへの適用性はまだ未定である。
本研究では、古典的RFFモデルとQNNと量子カーネルアーキテクチャの両方を用いた回帰および分類タスクのための量子モデルとの一般化性能ギャップを導出する。
本研究は,既存の量子カーネル方式の実用的不等化を示す数値実験により,本研究の成果を裏付けるものである。
我々の発見は、RFFに基づく量子化の適用可能性を広げるだけでなく、実用的な機械学習タスクにおける潜在的な量子アドバンテージの理解を深める。
関連論文リスト
- Quantum advantage for learning shallow neural networks with natural data distributions [4.363673971859799]
本研究では,QSQモデルにおける周期性ニューロンの学習に有効な量子アルゴリズムについて検討した。
我々の知る限り、我々の研究は、実数値関数を明示的に考慮する古典関数に対する量子学習理論の最初の成果である。
論文 参考訳(メタデータ) (2025-03-26T18:00:17Z) - The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
本稿では,各ビルディングブロックが任意の量子チャネルを実装可能な,散逸型量子ニューラルネットワーク(DQNN)の新しいアーキテクチャを提案する。
アイソメトリの多目的な1対1パラメトリ化を導出し,提案手法の効率的な実装を可能にした。
論文 参考訳(メタデータ) (2025-02-13T17:38:48Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
量子機械学習(Quantum Machine Learning)は、量子コンピューティングと機械学習の交差点におけるパラダイムシフトである。
この分野は、ハードウェアの制約、ノイズ、量子ビットコヒーレンス(英語版)の制限など、重大な課題に直面している。
この調査は、実用的な実世界のアプリケーションに向けて量子機械学習を進めるための基盤となるリソースを提供することを目的としている。
論文 参考訳(メタデータ) (2025-01-16T13:25:49Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。