Thermodynamic Analysis for Harmonic Oscillator with Position-Dependent Mass
- URL: http://arxiv.org/abs/2505.15981v1
- Date: Wed, 21 May 2025 20:00:44 GMT
- Title: Thermodynamic Analysis for Harmonic Oscillator with Position-Dependent Mass
- Authors: Daniel Sabi Takou, Assimiou Yarou Mora, Gabriel Y. H. Avossevou,
- Abstract summary: We show that increasing alpha leads to a decrease in entropy and specific heat, reflecting a confinement-induced reduction in the number of accessible states.<n>This study underscores the influence of mass deformation on quantum thermal responses and demonstrates that, while the overall thermodynamic trends are consistent with those reported in the literature, certain distinctive features emerge due to the specific form of the deformation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we examine the thermodynamic behavior of a quantum harmonic oscillator with a position-dependent mass (PDM), where spatial inhomogeneity is modeled through a deformation parameter {\alpha}. Based on the exact energy spectrum, we explore the resulting thermodynamic quantities and superstatistics. Our findings reveal that increasing {\alpha} leads to a decrease in entropy and specific heat, reflecting a confinement-induced reduction in the number of accessible states. The partition function and free energy exhibit smooth behavior across all parameter regimes, indicating the absence of critical phase transitions. This study underscores the influence of mass deformation on quantum thermal responses and demonstrates that, while the overall thermodynamic trends are consistent with those reported in the literature, certain distinctive features emerge due to the specific form of the deformation.
Related papers
- Non-equilibrium thermodynamics of gravitational objective-collapse models [0.0]
We investigate the entropy production in the Di'osi-Penrose (DP) model, one of the most extensively studied gravity-related collapse mechanisms.<n>Our findings reveal that the original DP model induces heating, producing dynamics consistent with the Second Law of thermodynamics.<n>In contrast, its dissipative extension achieves physically consistent thermalization in the regime of low dissipation strength.
arXiv Detail & Related papers (2025-02-05T13:47:41Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Quantum thermodynamics of periodically driven polaritonic systems [0.0]
We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems at room temperature.
We compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance.
arXiv Detail & Related papers (2022-07-03T04:32:11Z) - A quantum information perspective on meson melting [0.0]
We propose to use quantum information notions to characterize thermally induced melting of nonperturbative bound states at high temperatures.
An equilibrium signature of meson melting is identified in the temperature dependence of the thermal-state second R'enyi entropy.
These analyses bring new ways of describing in-medium meson phenomena in quantum many-body and high-energy physics.
arXiv Detail & Related papers (2022-06-21T16:53:44Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Wehrl entropy production rate across a dynamical quantum phase
transition [0.0]
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo.
We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations.
The small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo.
arXiv Detail & Related papers (2020-04-02T16:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.