Toward Theoretical Insights into Diffusion Trajectory Distillation via Operator Merging
- URL: http://arxiv.org/abs/2505.16024v1
- Date: Wed, 21 May 2025 21:13:02 GMT
- Title: Toward Theoretical Insights into Diffusion Trajectory Distillation via Operator Merging
- Authors: Weiguo Gao, Ming Li,
- Abstract summary: Diffusion trajectory distillation aims to accelerate sampling in diffusion models that produce high-quality outputs but suffer from slow sampling speeds.<n>We propose a programming algorithm to compute the optimal merging strategy that maximally preserves signal fidelity.<n>Our findings enhance the theoretical understanding of diffusion trajectory distillation and offer practical insights for improving distillation strategies.
- Score: 10.315743300140966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion trajectory distillation methods aim to accelerate sampling in diffusion models, which produce high-quality outputs but suffer from slow sampling speeds. These methods train a student model to approximate the multi-step denoising process of a pretrained teacher model in a single step, enabling one-shot generation. However, theoretical insights into the trade-off between different distillation strategies and generative quality remain limited, complicating their optimization and selection. In this work, we take a first step toward addressing this gap. Specifically, we reinterpret trajectory distillation as an operator merging problem in the linear regime, where each step of the teacher model is represented as a linear operator acting on noisy data. These operators admit a clear geometric interpretation as projections and rescalings corresponding to the noise schedule. During merging, signal shrinkage occurs as a convex combination of operators, arising from both discretization and limited optimization time of the student model. We propose a dynamic programming algorithm to compute the optimal merging strategy that maximally preserves signal fidelity. Additionally, we demonstrate the existence of a sharp phase transition in the optimal strategy, governed by data covariance structures. Our findings enhance the theoretical understanding of diffusion trajectory distillation and offer practical insights for improving distillation strategies.
Related papers
- Flows and Diffusions on the Neural Manifold [0.0]
Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling.<n>We extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics.
arXiv Detail & Related papers (2025-07-14T02:26:06Z) - Improving Consistency Models with Generator-Augmented Flows [16.049476783301724]
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network.<n>They can be learned in two ways: consistency distillation and consistency training.<n>We propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model.
arXiv Detail & Related papers (2024-06-13T20:22:38Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Operator Inference and Physics-Informed Learning of Low-Dimensional
Models for Incompressible Flows [5.756349331930218]
We suggest a new approach to learning structured low-order models for incompressible flow from data.
We show that learning dynamics of the velocity and pressure can be decoupled, thus leading to an efficient operator inference approach.
arXiv Detail & Related papers (2020-10-13T21:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.