論文の概要: An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection
- arxiv url: http://arxiv.org/abs/2505.16039v1
- Date: Wed, 21 May 2025 21:38:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.924532
- Title: An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection
- Title(参考訳): 脳疾患検出のための視覚変換器の探索と説明と伝達学習への探索的アプローチ
- Authors: Shuvashis Sarker, Shamim Rahim Refat, Faika Fairuj Preotee, Shifat Islam, Tashreef Muhammad, Mohammad Ashraful Hoque,
- Abstract要約: 本研究では、視覚変換器(ViT)と伝達学習(TL)モデルを用いて脳疾患の分類を行った。
その結果,ViTは伝達学習モデルを超え,94.39%の分類精度が得られた。
- 参考スコア(独自算出の注目度): 0.879076350896412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.
- Abstract(参考訳): 脳は、運動、記憶、思考など多くの重要なタスクを管理する非常に複雑な器官である。
腫瘍や変性疾患などの脳関連疾患は、診断や治療が困難である。
磁気共鳴イメージング(MRI)は、これらの条件を識別するための重要なツールであり、脳構造の高解像度画像を提供する。
それにもかかわらず、MRIスキャンの解釈は複雑である。
本研究では,バングラデシュのMRIデータを用いて脳疾患の分類を行うために,VGG16,VGG19,Resnet50V2,MobilenetV2などの視覚変換器(ViT)モデルと伝達学習(TL)モデルの比較分析を行った。
ViTは画像のグローバルな関係を捉える能力で知られており、特に医療画像処理に有効である。
転送学習は、事前訓練されたモデルを微調整することで、データの制約を軽減するのに役立つ。
さらに、モデル予測の解釈には、GradCAM、GradCAM++、LayerCAM、ScoreCAM、Faster-ScoreCAMなどの説明可能なAI(XAI)メソッドが使用される。
その結果,ViTは伝達学習モデルを超え,94.39%の分類精度が得られた。
XAI法の統合により、モデルの透明性が向上し、より精度の高い脳疾患の診断において、医療専門家を助ける重要な洞察を提供する。
関連論文リスト
- Bidirectional Brain Image Translation using Transfer Learning from Generic Pre-trained Models [0.0]
医療分野では、ラベル付き医療画像を取得することは労働集約的で費用がかかるため、データの不足に対処することが大きな課題である。
近年の研究では、この問題を克服するためにトランスファーラーニング(transfer learning)が提案されている。
本研究では,MR-CT画像翻訳の課題に対して,転送学習を適用した。
論文 参考訳(メタデータ) (2025-01-21T20:30:15Z) - From Images to Insights: Transforming Brain Cancer Diagnosis with Explainable AI [1.939732664561742]
本研究はバングラデシュの脳腫瘍MRIデータセットを,脳腫瘍,脳グリオーマ,脳髄質の3つのカテゴリに分類した6,056個のMRI画像を含む。
DenseNet169は、精度、精度、リコール、F1-Scoreは全て0.9983に達した。
論文 参考訳(メタデータ) (2025-01-09T18:35:43Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Cross-Modal Domain Adaptation in Brain Disease Diagnosis: Maximum Mean Discrepancy-based Convolutional Neural Networks [0.0]
脳障害は世界の健康にとって大きな課題であり、毎年何百万人もの死者を出している。
これらの疾患の正確な診断は、MRIやCTのような高度な医療画像技術に大きく依存している。
注釈付きデータの不足は、診断のための機械学習モデルをデプロイする上で大きな課題となる。
論文 参考訳(メタデータ) (2024-05-06T07:44:46Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
我々は、Deep Transfer Learningを用いて脳MRI画像中の腫瘍の多重分類を行うフレームワークを開発した。
新たなデータセットと2つの公開MRI脳データセットを使用して、提案手法は86.40%の精度で分類された。
本研究は,脳腫瘍のマルチクラス化タスクにおいて,トランスファーラーニングのためのフレームワークが有用かつ効果的な方法であることを示すものである。
論文 参考訳(メタデータ) (2021-06-14T12:19:27Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。