論文の概要: SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution
- arxiv url: http://arxiv.org/abs/2505.16048v1
- Date: Wed, 21 May 2025 22:00:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.928039
- Title: SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution
- Title(参考訳): SPhyR : 物質分布の空間物理推論ベンチマーク
- Authors: Philipp D. Siedler,
- Abstract要約: データセットには、部分構造内のマスクされた領域を埋めることから、完全な物質分布を予測することまで、さまざまなタスクが含まれている。
本データセットは2次元設定における空間的および物理的推論能力の評価を目標とし,従来の言語と論理的ベンチマークを補完する視点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel dataset designed to benchmark the physical and spatial reasoning capabilities of Large Language Models (LLM) based on topology optimization, a method for computing optimal material distributions within a design space under prescribed loads and supports. In this dataset, LLMs are provided with conditions such as 2D boundary, applied forces and supports, and must reason about the resulting optimal material distribution. The dataset includes a variety of tasks, ranging from filling in masked regions within partial structures to predicting complete material distributions. Solving these tasks requires understanding the flow of forces and the required material distribution under given constraints, without access to simulation tools or explicit physical models, challenging models to reason about structural stability and spatial organization. Our dataset targets the evaluation of spatial and physical reasoning abilities in 2D settings, offering a complementary perspective to traditional language and logic benchmarks.
- Abstract(参考訳): 本稿では,トポロジ最適化に基づく大規模言語モデル(LLM)の物理的および空間的推論能力のベンチマークを行うために設計された新しいデータセットを提案する。
このデータセットでは、LLMは2次元境界、応用力、支持などの条件を備えており、結果として生じる最適物質分布を推論する必要がある。
データセットには、部分構造内のマスクされた領域を埋めることから、完全な物質分布を予測することまで、さまざまなタスクが含まれている。
これらの課題を解決するには、シミュレーションツールや明示的な物理モデルにアクセスせずに、所定の制約の下での力の流れと必要な物質分布を理解する必要がある。
本データセットは2次元設定における空間的および物理的推論能力の評価を目標とし,従来の言語と論理的ベンチマークを補完する視点を提供する。
関連論文リスト
- Physics Context Builders: A Modular Framework for Physical Reasoning in Vision-Language Models [9.474337395173388]
視覚言語モデル(VLM)における物理推論の課題
ファインチューニングは大きなモデルでは高価であり、すべてのタスクで繰り返し実行できない。
我々は,物理シーンの詳細な記述を生成するために,特殊なVLMを微調整した新しいモジュラーフレームワークであるPhysical Context Builders (PCBs)を紹介した。
論文 参考訳(メタデータ) (2024-12-11T18:40:16Z) - LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models [57.92316645992816]
空間的推論は人間の認知の基本的側面であり、三次元空間における物体の直感的な理解と操作を可能にする。
視覚言語モデル(VLM)のセマンティック知識を活用するフレームワークおよびシーンレイアウト表現であるLayoutVLMを紹介する。
本稿では,既存のシーンデータセットから抽出したシーンレイアウト表現を用いた微調整VLMによる推論性能の向上を実証する。
論文 参考訳(メタデータ) (2024-12-03T06:15:04Z) - Benchmarking Distributional Alignment of Large Language Models [43.0198231524816]
言語モデル(LM)は、人々のシミュラクラ(simulacra)として使われることが多いが、特定の人口集団の視点の分布と一致する能力は、いまだに不明である。
我々は、政治的価値を超えて拡張されたデータセットを構築し、このタスクのための人間のベースラインを作成し、LMが特定のグループの意見分布とどの程度一致できるかを評価する。
本分析により, ALMが人体をシミュレートするかどうか, どのように利用できるか, およびLCMがそのような分布をシミュレートするよりも, より正確に意見分布を記述できるのかが明らかとなった。
論文 参考訳(メタデータ) (2024-11-08T08:41:17Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Robust Model-Based Optimization for Challenging Fitness Landscapes [96.63655543085258]
タンパク質の設計には、フィットネスのランドスケープの最適化が含まれる。
指導法は, トレーニングセットにおける高適合度サンプルの多彩さに課題を呈する。
デザイン空間における「分離」というこの問題は、既存のモデルベース最適化ツールにおいて重大なボトルネックとなっていることを示す。
本稿では,新しいVAEを検索モデルとして利用して問題を克服する手法を提案する。
論文 参考訳(メタデータ) (2023-05-23T03:47:32Z) - Deep autoencoders for physics-constrained data-driven nonlinear
materials modeling [0.6445605125467573]
物理制約付きデータ駆動コンピューティング(英: Physics-Constrained data-driven computing)は、物質データベースを直接ベースとした複雑な物質のシミュレーションを可能にする新しい計算パラダイムである。
本稿では、非線形材料モデリングにおけるこれらの基本的な問題に対処するための、データ駆動型フレームワークに基づくディープラーニング技術を紹介する。
オフラインでトレーニングされたオートエンコーダと検出された埋め込みスペースは、オンラインデータ駆動計算に組み込まれる。
論文 参考訳(メタデータ) (2022-09-03T20:13:47Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Input-Output Balanced Framework for Long-tailed LiDAR Semantic
Segmentation [12.639524717464509]
本稿では,ロングテール分布の問題を扱うための入出力バランスフレームワークを提案する。
入力空間に対して、メッシュモデルからこれらのテールインスタンスを合成し、LiDARスキャンの位置と密度分布をうまくシミュレートする。
出力空間に対して, 形状と実例量に基づいて, 異なるカテゴリをグループ化するマルチヘッドブロックを提案する。
論文 参考訳(メタデータ) (2021-03-26T05:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。