Emotion-based Recommender System
- URL: http://arxiv.org/abs/2505.16121v2
- Date: Wed, 28 May 2025 02:11:16 GMT
- Title: Emotion-based Recommender System
- Authors: Hao Wang,
- Abstract summary: We create a new theory and metrics that could capture users' emotion when they are interacting with recommender systems.<n>We also provide effective and efficient visualization techniques for visualization of users' emotion and its change in the customers' lifetime cycle.
- Score: 5.694872363688119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender system is one of the most critical technologies for large internet companies such as Amazon and TikTok. Although millions of users use recommender systems globally everyday, and indeed, much data analysis work has been done to improve the technical accuracy of the system, to our limited knowledge, there has been little attention paid to analysis of users' emotion in recommender systems. In this paper, we create a new theory and metrics that could capture users' emotion when they are interacting with recommender systems. We also provide effective and efficient visualization techniques for visualization of users' emotion and its change in the customers' lifetime cycle. In the end, we design a framework for emotion-based recommendation algorithms, illustrated in a straightforward example with experimental results to demonstrate the effectiveness of our new theory.
Related papers
- A Study on Enhancing User Engagement by Employing Gamified Recommender Systems [7.330085696471743]
Gamification can motivate individuals to have more activities on the system.<n>This work provides a comprehensive review of how gamified recommender systems can enhance user engagement in various domain applications.
arXiv Detail & Related papers (2025-08-02T08:49:45Z) - RecGPT Technical Report [57.84251629878726]
We propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline.<n> RecGPT integrates large language models into key stages of user interest mining, item retrieval, and explanation generation.<n>Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders.
arXiv Detail & Related papers (2025-07-30T17:55:06Z) - Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.<n>For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - LLM-Powered Explanations: Unraveling Recommendations Through Subgraph Reasoning [40.53821858897774]
We introduce a novel recommender that synergies Large Language Models (LLMs) and Knowledge Graphs (KGs) to enhance the recommendation and provide interpretable results.
Our approach significantly enhances both the effectiveness and interpretability of recommender systems.
arXiv Detail & Related papers (2024-06-22T14:14:03Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
Review-based recommender systems have emerged as a significant sub-field in this domain.
We present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations.
We propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
arXiv Detail & Related papers (2024-05-09T05:45:18Z) - Impression-Aware Recommender Systems [53.48892326556546]
We present a systematic literature review on recommender systems using impressions.<n>We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - User-Controllable Recommendation via Counterfactual Retrospective and
Prospective Explanations [96.45414741693119]
We present a user-controllable recommender system that seamlessly integrates explainability and controllability.
By providing both retrospective and prospective explanations through counterfactual reasoning, users can customize their control over the system.
arXiv Detail & Related papers (2023-08-02T01:13:36Z) - Sequence-aware item recommendations for multiply repeated user-item
interactions [0.0]
We design a recommender system that induces the temporal dimension in the task of item recommendation.
It considers sequences of item interactions for each user in order to make recommendations.
This method is empirically shown to give highly accurate predictions of user-items interactions for all users in a retail environment.
arXiv Detail & Related papers (2023-04-02T17:06:07Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
We propose an approach that infers the objective directly from observed user interactions.
These inferences can be made regardless of prior knowledge and across different types of user behavior.
We introduce Interactive System (ISO), a novel algorithm that uses these inferred objectives for optimization.
arXiv Detail & Related papers (2020-06-19T20:49:14Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.