論文の概要: Distilling the Implicit Multi-Branch Structure in LLMs' Reasoning via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.16142v1
- Date: Thu, 22 May 2025 02:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.985322
- Title: Distilling the Implicit Multi-Branch Structure in LLMs' Reasoning via Reinforcement Learning
- Title(参考訳): 強化学習によるLLM推論における暗黙多分岐構造の蒸留
- Authors: Shicheng Xu, Liang Pang, Yunchang Zhu, Jia Gu, Zihao Wei, Jingcheng Deng, Feiyang Pan, Huawei Shen, Xueqi Cheng,
- Abstract要約: 教師による微調整(SFT)による教師から生徒への推論経路の蒸留は、大規模言語モデル(LLM)の推論能力を向上させるショートカットを提供する。
GSRM(Generative Structure Reward Model)による強化学習に基づく蒸留フレームワークRLKDを提案する。
GSRMは、推論パスを複数のメタ推論解決ステップに変換し、報酬を計算して、学生と教師の推論の構造的アライメントを測定する。
- 参考スコア(独自算出の注目度): 63.888013006686364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distilling reasoning paths from teacher to student models via supervised fine-tuning (SFT) provides a shortcut for improving the reasoning ability of smaller Large Language Models (LLMs). However, the reasoning paths generated by teacher models often reflect only surface-level traces of their underlying authentic reasoning. Insights from cognitive neuroscience suggest that authentic reasoning involves a complex interweaving between meta-reasoning (which selects appropriate sub-problems from multiple candidates) and solving (which addresses the sub-problem). This implies authentic reasoning has an implicit multi-branch structure. Supervised fine-tuning collapses this rich structure into a flat sequence of token prediction in the teacher's reasoning path, preventing effective distillation of this structure to students. To address this limitation, we propose RLKD, a reinforcement learning (RL)-based distillation framework guided by a novel Generative Structure Reward Model (GSRM). Our GSRM converts reasoning paths into multiple meta-reasoning-solving steps and computes rewards to measure structural alignment between student and teacher reasoning. RLKD combines this reward with RL, enabling student LLMs to internalize the teacher's implicit multi-branch reasoning structure rather than merely mimicking fixed output paths. Experiments show RLKD surpasses standard SFT-RL pipelines even when trained on 0.1% of data under an RL-only regime, unlocking greater student reasoning potential than SFT-based distillation.
- Abstract(参考訳): 教師から生徒への推論経路を教師付き微調整(SFT)で拡張することで、より小さなLarge Language Models(LLM)の推論能力を向上させるショートカットを提供する。
しかし、教師モデルが生成する推論パスは、その基礎となる真の推論の表面レベルのトレースのみを反映することが多い。
認知神経科学からの洞察は、真の推論はメタ推論(複数の候補から適切なサブプロブレムを選択する)と解決(サブプロブレムに対処する)の間の複雑な相互関係を含んでいることを示唆している。
これは、真理化が暗黙のマルチブランチ構造を持つことを意味する。
教師の推論経路におけるトークン予測の平坦なシーケンスにリッチな構造が崩壊し、この構造が学生に効果的に蒸留されるのを防ぐ。
この制限に対処するため,新しい生成構造回帰モデル(GSRM)によって導かれる強化学習(RL)に基づく蒸留フレームワークであるRLKDを提案する。
GSRMは、推論パスを複数のメタ推論解決ステップに変換し、報酬を計算して、学生と教師の推論の構造的アライメントを測定する。
RLKDはこの報酬をRLと組み合わせることで、学生のLLMが教師の暗黙のマルチブランチ推論構造を内部化することができる。
実験では、RLのみの規則の下で0.1%のデータで訓練された場合でも、RLKDは標準のSFT-RLパイプラインを超えることが示され、SFTベースの蒸留よりも学生の推論可能性を高めることができた。
関連論文リスト
- ToTRL: Unlock LLM Tree-of-Thoughts Reasoning Potential through Puzzles Solving [4.987786842464663]
Tree-of-Thoughts (ToT) は、ツリー構造内の探索として推論をモデル化することによって、概念的により高度なアプローチを提供する。
ToTRLは、逐次CoT戦略に基づく並列ToT戦略の開発においてLLMを導くように設計されている。
ToTQwen3-8Bモデルは,複雑な推論タスクの性能向上と推論効率の向上を実現している。
論文 参考訳(メタデータ) (2025-05-19T05:18:58Z) - Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model? [67.30809748319486]
RLVR(Reinforcement Learning with Verifiable Rewards)は近年,大規模言語モデル(LLM)の推論性能の向上に成功している。
本研究はRLVRの現状を批判的に考察する。
現在のトレーニング設定では、根本的な新しい推論パターンが生まれていないことが分かりました。
論文 参考訳(メタデータ) (2025-04-18T17:59:56Z) - SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models [39.551767637896404]
本研究は、LVLM(Large Vision-Language Models)のトレーニングにおいて、支配的な教師付き微調整(SFT)、強化学習(RL)パラダイムを再考する。
SFTは、専門家モデルから模倣された擬似推論経路を誘導することにより、その後のRLを著しく損なう可能性があることを示す。
我々は,LVLMにおける推論を支援するために設計された,新しいマルチモーダルデータセットであるVLAA-Thinkingを紹介する。
論文 参考訳(メタデータ) (2025-04-10T16:54:05Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Learning from Committee: Reasoning Distillation from a Mixture of Teachers with Peer-Review [11.756344944226495]
ピアリビュー(FAIR)アプローチによる新しいフォールト・アウェア・ディストイレーション(Fact-Aware DistIllation)を導入する。
本手法は,教師から合理性を得るのではなく,教師に生徒の過ちを特定・説明するよう求めている。
本手法は,教師が正しい推理を行う確率を低くする。
論文 参考訳(メタデータ) (2024-10-04T17:59:41Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - SEER: Facilitating Structured Reasoning and Explanation via Reinforcement Learning [29.514755268807868]
構造的推論と説明を容易にする構造的回帰を最大化する新しい手法であるSEERを提案する。
提案手法は構造的推論に固有の階層構造と分岐構造を正確に記述する。
実験の結果,SEERは最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-01-24T06:10:51Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - SCOTT: Self-Consistent Chain-of-Thought Distillation [68.40232422158569]
大規模言語モデル(LM)は、チェーン・オブ・シークレット・プロンプトを通じて予測のための自由テキスト論理を生成する。
そこで本研究では,教師モデルから,小規模で自己整合的なCoTモデルを学習するための忠実な知識蒸留法を提案する。
忠実蒸留を確実にするために,教師生成の合理性を用いて,反実的推論目的の学生LMを学習する。
論文 参考訳(メタデータ) (2023-05-03T03:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。