論文の概要: Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation
- arxiv url: http://arxiv.org/abs/2505.16146v1
- Date: Thu, 22 May 2025 02:45:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.988659
- Title: Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation
- Title(参考訳): 幻覚除去のためのスパースオートエンコーダによるLVLMのステアリング
- Authors: Zhenglin Hua, Jinghan He, Zijun Yao, Tianxu Han, Haiyun Guo, Yuheng Jia, Junfeng Fang,
- Abstract要約: 視覚言語モデル(LVLM)は視覚質問応答(VQA)や画像キャプションといったマルチモーダルタスクにおいて顕著な性能を発揮している。
彼らはまだ幻覚に悩まされており、視覚的な入力と矛盾するテキストを生成し、現実世界のアプリケーションに重大なリスクを及ぼしている。
LVLMの幻覚を緩和するために,SAE遅延方向(SSL)によるステアリングLVLMを提案する。
- 参考スコア(独自算出の注目度): 17.864481047606677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks such as visual question answering (VQA) and image captioning. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with either hallucinations or actuality, realizing more precise and direct hallucination-related representations. Our analysis demonstrates that interventions along the faithful direction we identified can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a training-free method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead.
- Abstract(参考訳): 視覚言語モデル(LVLM)は視覚質問応答(VQA)や画像キャプションといったマルチモーダルタスクにおいて顕著な性能を発揮している。
しかし、彼らはまだ幻覚に悩まされており、視覚的な入力と矛盾するテキストを生成し、現実世界のアプリケーションに重大なリスクを及ぼしている。
この問題に対処するための既存のアプローチは、外部知識ベースの導入、アライメントトレーニング、あるいはデコード戦略に重点を置いている。
最近の研究は、LVLMの内部表現を調整することで、より効率的な代替品を探究しようとしている。
これらの方法は有望ではあるが、幻覚が不十分に抑制されるか、あるいは正常な意味論に悪影響を及ぼす過剰な介入を引き起こす可能性がある。
本研究では,スパースオートエンコーダ(SAE)を利用して,幻覚と現実の両方に密接に関連する意味的方向を識別し,より正確で直接的な幻覚関連表現を実現する。
我々の分析は、我々が特定した忠実な方向に沿った介入は幻覚を緩和し、幻覚の方向に沿った介入はそれらを悪化させることを示した。
これらの知見に基づいて,SAE遅延方向(SSL)によるステアリングLVLMを提案する。
大規模な実験では、SSLは幻覚の緩和において既存のデコードアプローチを著しく上回り、異なるモデルアーキテクチャ間の転送可能性を維持しながら、追加の時間的オーバーヘッドは無視できない。
関連論文リスト
- Mitigating Hallucinations via Inter-Layer Consistency Aggregation in Large Vision-Language Models [3.9464481148889354]
層集約(DCLA)による層間整合性を用いた復号化機構を提案する。
提案手法は,従来のレイヤから表現を集約することで動的セマンティック参照を構築し,階層間の一貫性を強制するために意味的に逸脱したレイヤを補正する。
MMEやPOPEのような幻覚ベンチマークの実験では、DCLAはLVLMの信頼性と性能を高めつつ、幻覚を効果的に低減することを示した。
論文 参考訳(メタデータ) (2025-05-18T10:15:42Z) - Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models - [1.2499537119440245]
効率的なコントラストデコーディング(ECD)は、確率的幻覚検出を利用して、推定時に出力分布を文脈的に正確な解へとシフトする単純な方法である。
実験の結果,LCDは幻覚を効果的に軽減し,LVLMベンチマークの性能や計算時間に対して最先端の手法より優れることがわかった。
論文 参考訳(メタデータ) (2025-04-16T14:50:25Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
大規模視覚言語モデル(LVLM)は、下流のマルチモーダルタスクに対する視覚言語理解において顕著な能力を示している。
LVLMは、複雑な生成タスクにおいて幻覚を生じさせ、視覚入力と生成されたコンテンツの間に矛盾が生じている。
本研究では,LVLMにおける幻覚を無訓練で緩和するIMCCD法を提案する。
論文 参考訳(メタデータ) (2025-01-03T17:56:28Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
マルチモーダル大規模言語モデル(MLLM)は、視覚言語タスクを前進させる前例のない能力を示した。
本稿では,MLLMにおける幻覚に対処するためのボトムアップ推論フレームワークを提案する。
本フレームワークは、認識レベル情報と認知レベルコモンセンス知識を検証・統合することにより、視覚とテキストの両方の入力における潜在的な問題に体系的に対処する。
論文 参考訳(メタデータ) (2024-12-15T09:10:46Z) - CATCH: Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs [74.36850397755572]
CATCHは、未解決のシナリオにおいて、きめ細かい特徴知覚と累積幻覚を減少させる視覚的欠陥に関連する問題に対処する。
これは、特定のデータや事前知識を必要とせず、様々な視覚的質問応答タスクに適用でき、追加のトレーニングを必要とせず、新しいタスクにしっかりと一般化する。
論文 参考訳(メタデータ) (2024-11-19T18:27:31Z) - Reducing Hallucinations in Vision-Language Models via Latent Space Steering [34.1755878632361]
幻覚は、アプリケーションに大規模な視覚言語モデル(LVLM)を配置する上での課題である。
本稿では,視覚的特徴の安定性を高めるために,視覚とテクスチュアル・インターベンション(VTI, Visual and Textual Intervention)を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:42:30Z) - Self-Introspective Decoding: Alleviating Hallucinations for Large Vision-Language Models [30.26685485474035]
LVLM(Large Vision-Language Models)は近年急速に進歩している。
幻覚問題として知られる問題は、重大なボトルネックとして浮上している。
自己検査復号法(Self-Introspective Decoding, SID)を提案する。
論文 参考訳(メタデータ) (2024-08-04T13:50:17Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
本研究は,大規模視覚言語モデル(LVLM)の物体幻覚に関する最初の体系的研究である。
LVLMは、記述中の対象画像と矛盾しないオブジェクトを生成する傾向がある。
対象の幻覚を評価するために,POPEと呼ばれるポーリングに基づくクエリ手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T16:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。