論文の概要: Mitigating Hallucinations via Inter-Layer Consistency Aggregation in Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2505.12343v1
- Date: Sun, 18 May 2025 10:15:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.175951
- Title: Mitigating Hallucinations via Inter-Layer Consistency Aggregation in Large Vision-Language Models
- Title(参考訳): 大規模視覚言語モデルにおける階層間一貫性による幻覚の緩和
- Authors: Kai Tang, Jinhao You, Xiuqi Ge, Hanze Li, Yichen Guo, Xiande Huang,
- Abstract要約: 層集約(DCLA)による層間整合性を用いた復号化機構を提案する。
提案手法は,従来のレイヤから表現を集約することで動的セマンティック参照を構築し,階層間の一貫性を強制するために意味的に逸脱したレイヤを補正する。
MMEやPOPEのような幻覚ベンチマークの実験では、DCLAはLVLMの信頼性と性能を高めつつ、幻覚を効果的に低減することを示した。
- 参考スコア(独自算出の注目度): 3.9464481148889354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the impressive capabilities of Large Vision-Language Models (LVLMs), they remain susceptible to hallucinations-generating content that is inconsistent with the input image. Existing training-free hallucination mitigation methods often suffer from unstable performance and high sensitivity to hyperparameter settings, limiting their practicality and broader adoption. In this paper, we propose a novel decoding mechanism, Decoding with Inter-layer Consistency via Layer Aggregation (DCLA), which requires no retraining, fine-tuning, or access to external knowledge bases. Specifically, our approach constructs a dynamic semantic reference by aggregating representations from previous layers, and corrects semantically deviated layers to enforce inter-layer consistency. The method allows DCLA to robustly mitigate hallucinations across multiple LVLMs. Experiments on hallucination benchmarks such as MME and POPE demonstrate that DCLA effectively reduces hallucinations while enhancing the reliability and performance of LVLMs.
- Abstract(参考訳): LVLM(Large Vision-Language Models)の印象的な機能にもかかわらず、それらは入力画像と矛盾する幻覚生成コンテンツに影響を受けやすいままである。
既存の訓練のない幻覚緩和法は、しばしば不安定な性能とハイパーパラメータ設定に対する高い感度に悩まされ、実用性やより広範な採用を制限する。
本稿では,レイヤ集約(Layer Aggregation, DCLA)による層間一貫性の復号化機構を提案する。
具体的には,従来のレイヤから表現を集約することで動的セマンティック参照を構築し,階層間の一貫性を強制するために意味的に逸脱したレイヤを補正する。
この方法により、DCLAは複数のLVLMにまたがる幻覚を堅牢に緩和することができる。
MMEやPOPEのような幻覚ベンチマークの実験では、DCLAはLVLMの信頼性と性能を高めつつ、幻覚を効果的に低減することを示した。
関連論文リスト
- HalluLens: LLM Hallucination Benchmark [49.170128733508335]
大規模言語モデル(LLM)は、しばしばユーザ入力やトレーニングデータから逸脱する応答を生成する。
本稿では,新たな内因性評価タスクと既存内因性評価タスクを併用した総合幻覚ベンチマークを提案する。
論文 参考訳(メタデータ) (2025-04-24T13:40:27Z) - Mitigating Hallucinations in Large Vision-Language Models with Internal Fact-based Contrastive Decoding [5.424048651554831]
内部Fact-based Contrastive Decoding (IFCD)は、大規模視覚言語モデル(LVLM)の推論過程における幻覚の緩和と抑制を目的としている。
IFCDはLVLMの出力を校正し、最終予測から幻覚ロジットを効果的に除去する。
実験の結果, IFCD はPOPE では平均9% の精度向上, MME では8% の精度向上を実現し, オブジェクトレベルの幻覚と属性レベルの幻覚の両方を著しく軽減することがわかった。
論文 参考訳(メタデータ) (2025-02-03T05:08:35Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
大規模視覚言語モデル(LVLM)は、下流のマルチモーダルタスクに対する視覚言語理解において顕著な能力を示している。
LVLMは、複雑な生成タスクにおいて幻覚を生じさせ、視覚入力と生成されたコンテンツの間に矛盾が生じている。
本研究では,LVLMにおける幻覚を無訓練で緩和するIMCCD法を提案する。
論文 参考訳(メタデータ) (2025-01-03T17:56:28Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
本稿では,LVLM推論における幻覚の低減を目的とした,命令コントラストデコーディング(ICD)手法を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
論文 参考訳(メタデータ) (2024-03-27T16:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。