GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval
- URL: http://arxiv.org/abs/2507.08945v1
- Date: Fri, 11 Jul 2025 18:10:01 GMT
- Title: GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval
- Authors: Savini Kashmira, Jayanaka L. Dantanarayana, KrisztiƔn Flautner, Lingjia Tang, Jason Mars,
- Abstract summary: GraphRunner is a novel graph-based retrieval framework that operates in three distinct stages: planning, verification, and execution.<n>It significantly reduces reasoning errors and detects hallucinations before execution.<n>Our evaluation using the GRBench dataset shows that GraphRunner consistently outperforms existing approaches.
- Score: 3.792463570467098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional Retrieval Augmented Generation (RAG) approaches are common in text-based applications. However, they struggle with structured, interconnected datasets like knowledge graphs, where understanding underlying relationships is crucial for accurate retrieval. A common direction in graph-based retrieval employs iterative, rule-based traversal guided by Large Language Models (LLMs). Such existing iterative methods typically combine reasoning with single hop traversal at each step, making them vulnerable to LLM reasoning errors and hallucinations that ultimately hinder the retrieval of relevant information. To address these limitations, we propose GraphRunner, a novel graph-based retrieval framework that operates in three distinct stages: planning, verification, and execution. This introduces high-level traversal actions that enable multi-hop exploration in a single step. It also generates a holistic traversal plan, which is verified against the graph structure and pre-defined traversal actions, reducing reasoning errors and detecting hallucinations before execution. GraphRunner significantly reduces LLM reasoning errors and detects hallucinations through validation. Our evaluation using the GRBench dataset shows that GraphRunner consistently outperforms existing approaches, achieving 10-50% performance improvements over the strongest baseline while reducing inference cost by 3.0-12.9x and response generation time by 2.5-7.1x, making it significantly more robust and efficient for graph-based retrieval tasks.
Related papers
- GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning [13.481673780508215]
GRAIL is a framework designed to interact with large-scale graphs for retrieval-augmented reasoning.<n>GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on knowledge graph question-answering datasets.
arXiv Detail & Related papers (2025-08-07T15:34:41Z) - Inference Scaled GraphRAG: Improving Multi Hop Question Answering on Knowledge Graphs [15.036480111358369]
Large Language Models (LLMs) have achieved impressive capabilities in language understanding and generation.<n>They continue to underperform on knowledge-intensive reasoning tasks due to limited access to structured context and multi-hop information.<n>We introduce Inference-Scaled GraphRAG, a novel framework that enhances LLM-based graph reasoning by applying inference-time compute scaling.
arXiv Detail & Related papers (2025-06-24T19:31:03Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness [15.829377965705746]
We propose E2GraphRAG, a streamlined graph-based RAG framework.<n>E2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval.
arXiv Detail & Related papers (2025-05-30T05:27:40Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus.<n>Current graph-based RAG approaches seldom prioritize the design of graph structures.<n>Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies.<n>We propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures.
arXiv Detail & Related papers (2025-04-15T18:24:00Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
Large language models (LLMs) suffer from hallucinations, especially on knowledge-intensive tasks.
Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora.
We propose a framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.
arXiv Detail & Related papers (2024-04-10T15:41:53Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.