Verifying Differentially Private Median Estimation
- URL: http://arxiv.org/abs/2505.16246v1
- Date: Thu, 22 May 2025 05:31:22 GMT
- Title: Verifying Differentially Private Median Estimation
- Authors: Hyukjun Kwon, Chenglin Fan,
- Abstract summary: We propose the first verifiable differentially private median estimation scheme based on zk-SNARKs.<n>Our scheme combines the exponential mechanism and a utility function for median estimation into an arithmetic circuit.
- Score: 4.083860866484599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential Privacy (DP) is a robust privacy guarantee that is widely employed in private data analysis today, finding broad application in domains such as statistical query release and machine learning. However, DP achieves privacy by introducing noise into data or query answers, which malicious actors could exploit during analysis. To address this concern, we propose the first verifiable differentially private median estimation scheme based on zk-SNARKs. Our scheme combines the exponential mechanism and a utility function for median estimation into an arithmetic circuit, leveraging a scaled version of the inverse cumulative distribution function (CDF) method for precise sampling from the distribution derived from the utility function. This approach not only ensures privacy but also provides a mechanism to verify that the algorithm achieves DP guarantees without revealing sensitive information in the process.
Related papers
- Benchmarking Fraud Detectors on Private Graph Data [70.4654745317714]
Currently, many types of fraud are managed in part by automated detection algorithms that operate over graphs.<n>We consider the scenario where a data holder wishes to outsource development of fraud detectors to third parties.<n>Third parties submit their fraud detectors to the data holder, who evaluates these algorithms on a private dataset and then publicly communicates the results.<n>We propose a realistic privacy attack on this system that allows an adversary to de-anonymize individuals' data based only on the evaluation results.
arXiv Detail & Related papers (2025-07-30T03:20:15Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.<n>We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Auditing Differential Privacy Guarantees Using Density Estimation [3.830092569453011]
We present a novel method for accurately auditing the differential privacy guarantees of DP mechanisms.
In particular, our solution is applicable to auditing DP guarantees of machine learning (ML) models.
arXiv Detail & Related papers (2024-06-07T10:52:15Z) - Noise Variance Optimization in Differential Privacy: A Game-Theoretic Approach Through Per-Instance Differential Privacy [7.264378254137811]
Differential privacy (DP) can measure privacy loss by observing the changes in the distribution caused by the inclusion of individuals in the target dataset.
DP has been prominent in safeguarding datasets in machine learning in industry giants like Apple and Google.
We propose per-instance DP (pDP) as a constraint, measuring privacy loss for each data instance and optimizing noise tailored to individual instances.
arXiv Detail & Related papers (2024-04-24T06:51:16Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
Amplification by subsampling is one of the main primitives in machine learning with differential privacy.
We propose the first general framework for deriving mechanism-specific guarantees.
We analyze how subsampling affects the privacy of groups of multiple users.
arXiv Detail & Related papers (2024-03-07T19:36:05Z) - Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus [6.364764301218972]
We propose a general approach named adaptive differentially quantized subspace (ADQSP)
We show that by varying a single quantization parameter the proposed method can vary between SMPC-type performances and DP-type performances.
Our results show the potential of exploiting traditional distributed signal processing tools for providing cryptographic guarantees.
arXiv Detail & Related papers (2023-12-13T07:52:16Z) - Bounded and Unbiased Composite Differential Privacy [25.427802467876248]
The objective of differential privacy (DP) is to protect privacy by producing an output distribution that is indistinguishable between two neighboring databases.
Existing solutions attempt to address this issue by employing post-processing or truncation techniques.
We propose a novel differentially private mechanism which uses a composite probability density function to generate bounded and unbiased outputs.
arXiv Detail & Related papers (2023-11-04T04:43:47Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - Propose, Test, Release: Differentially private estimation with high
probability [9.25177374431812]
We introduce a new general version of the PTR mechanism that allows us to derive high probability error bounds for differentially private estimators.
Our algorithms provide the first statistical guarantees for differentially private estimation of the median and mean without any boundedness assumptions on the data.
arXiv Detail & Related papers (2020-02-19T01:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.