Variational Quantum Algorithm for Solving the Liouvillian Gap
- URL: http://arxiv.org/abs/2505.16268v1
- Date: Thu, 22 May 2025 05:59:55 GMT
- Title: Variational Quantum Algorithm for Solving the Liouvillian Gap
- Authors: Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang,
- Abstract summary: In open quantum systems, the Liouvillian gap characterizes the relaxation time toward the steady state.<n>We propose a variational quantum algorithm for efficiently estimating the Liouvillian gap.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In open quantum systems, the Liouvillian gap characterizes the relaxation time toward the steady state. However, accurately computing this quantity is notoriously difficult due to the exponential growth of the Hilbert space and the non-Hermitian nature of the Liouvillian superoperator. In this work, we propose a variational quantum algorithm for efficiently estimating the Liouvillian gap. By utilizing the Choi-Jamiokowski isomorphism, we reformulate the problem as finding the first excitation energy of an effective non-Hermitian Hamiltonian. Our method employs variance minimization with an orthogonality constraint to locate the first excited state and adopts a two-stage optimization scheme to enhance convergence. Moreover, to address scenarios with degenerate steady states, we introduce an iterative energy-offset scanning technique. Numerical simulations on the dissipative XXZ model confirm the accuracy and robustness of our algorithm across a range of system sizes and dissipation strengths. These results demonstrate the promise of variational quantum algorithms for simulating open quantum many-body systems on near-term quantum hardware.
Related papers
- Learning Feasible Quantum States for Quadratic Constrained Binary Optimization Problems [41.23247424467223]
We develop a variational approach that creates an equal superposition of quantum states that satisfy constraints in a QCBO.<n>The resulting equal superposition can be used as an initial state for quantum algorithms that solve QUBOs/QCBOs.
arXiv Detail & Related papers (2025-08-04T16:44:53Z) - Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - A Quantum States Preparation Method Based on Difference-Driven
Reinforcement Learning [7.595208396761107]
This paper proposes a difference-driven reinforcement learning algorithm for quantum state preparation of two-qubit system.
It has different degrees of improvement in convergence speed and fidelity of the final quantum state.
arXiv Detail & Related papers (2023-09-29T04:42:11Z) - Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system [10.752869788647802]
Non-equilibrium steady states are a focal point of research in the study of open quantum systems.
Previous variational algorithms for searching these steady states have suffered from resource-intensive implementations.
We present a novel variational quantum algorithm that efficiently searches for non-equilibrium steady states by simulating the operator-sum form of the Lindblad equation.
arXiv Detail & Related papers (2023-09-13T01:57:27Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Variational quantum algorithms for scanning the complex spectrum of
non-Hermitian systems [0.0]
We propose a variational method for solving the non-Hermitian Hamiltonian on a quantum computer.
The energy is set as a parameter in the cost function and can be tuned to obtain the whole spectrum.
Our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.
arXiv Detail & Related papers (2023-05-31T12:50:22Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Exploring entanglement and optimization within the Hamiltonian
Variational Ansatz [0.4881924950569191]
We study a family of quantum circuits called the Hamiltonian Variational Ansatz (HVA)
HVA exhibits favorable structural properties such as mild or entirely absent barren plateaus and a restricted state space.
HVA can find accurate approximations to the ground states of a modified Haldane-Shastry Hamiltonian on a ring.
arXiv Detail & Related papers (2020-08-07T01:28:26Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.