論文の概要: Large-Scale Bayesian Tensor Reconstruction: An Approximate Message Passing Solution
- arxiv url: http://arxiv.org/abs/2505.16305v1
- Date: Thu, 22 May 2025 06:57:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.10198
- Title: Large-Scale Bayesian Tensor Reconstruction: An Approximate Message Passing Solution
- Title(参考訳): 大規模ベイズテンソル再建術 : 近似的メッセージパッシング法
- Authors: Bingyang Cheng, Zhongtao Chen, Yichen Jin, Hao Zhang, Chen Zhang, Edmud Y. Lam, Yik-Chung Wu,
- Abstract要約: CP-GAMPは大規模テンソルに対するスケーラブルなベイズCPDアルゴリズムである。
提案アルゴリズムは,現状のベイズ変量CPD法と比較して,ランタイムを82.7%削減する。
- 参考スコア(独自算出の注目度): 18.444283092747977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor CANDECOMP/PARAFAC decomposition (CPD) is a fundamental model for tensor reconstruction. Although the Bayesian framework allows for principled uncertainty quantification and automatic hyperparameter learning, existing methods do not scale well for large tensors because of high-dimensional matrix inversions. To this end, we introduce CP-GAMP, a scalable Bayesian CPD algorithm. This algorithm leverages generalized approximate message passing (GAMP) to avoid matrix inversions and incorporates an expectation-maximization routine to jointly infer the tensor rank and noise power. Through multiple experiments, for synthetic 100x100x100 rank 20 tensors with only 20% elements observed, the proposed algorithm reduces runtime by 82.7% compared to the state-of-the-art variational Bayesian CPD method, while maintaining comparable reconstruction accuracy.
- Abstract(参考訳): テンソルCANDECOMP/PARAFAC分解はテンソル再構成の基本モデルである。
ベイズフレームワークは、原理化された不確実性定量化と自動ハイパーパラメータ学習を可能にするが、既存の手法は高次元行列反転のため、大きなテンソルに対してうまくスケールしない。
この目的のために,拡張性のあるベイズ型CPDアルゴリズムCP-GAMPを導入する。
このアルゴリズムは、一般化された近似メッセージパッシング(GAMP)を利用して、行列の逆転を避けるとともに、期待最大化ルーチンを組み込んでテンソルランクとノイズパワーを共同で推定する。
複数の実験により、100x100x100ランクの20個のテンソルを20%の要素しか観測できないため、提案アルゴリズムは、現在のベイズ変量CPD法と比較して、実行時間を82.7%削減し、同等の再現精度を維持した。
関連論文リスト
- tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation and Its Application in Medical Image Segmentation [1.3281936946796913]
伝達学習は、事前訓練されたモデルからの知識を活用することで、目標タスクの性能を大幅に向上させた。
ディープニューラルネットワークのスケールアップに伴って、フル微調整によって、計算とストレージの大幅な課題がもたらされる。
テンソルCUR分解に基づく新しい微調整法であるtCURLoRAを提案する。
論文 参考訳(メタデータ) (2025-01-04T08:25:32Z) - ADMM-MM Algorithm for General Tensor Decomposition [7.0326155922512275]
提案アルゴリズムは3つの基本損失関数(ell$-loss, $ell$-loss, KL divergence)と様々な低ランクテンソル分解モデル(CP, Tucker, TT, TR)をサポートする。
提案したアルゴリズムにより広帯域のアプリケーションを解くことができ、プラグイン・アンド・プレイ方式で既存のテンソル分解モデルに容易に拡張できることを示す。
論文 参考訳(メタデータ) (2023-12-19T00:17:34Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
これらのアルゴリズムは、ポリアジック分解形態におけるローランクテンソルの因子行列の積空間上の非ユークリッド計量を利用する。
提案された勾配降下アルゴリズムがテンソル完備問題の定常点にグローバルに収束することを証明する。
合成データと実世界のデータの数値計算結果から,提案アルゴリズムは最先端アルゴリズムよりもメモリと時間において効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T22:11:06Z) - Geometric All-Way Boolean Tensor Decomposition [14.065968221500246]
幾何的視点からテンソルのランク-1 基底を逐次同定する GETF を提案する。
合成データと実世界のデータの両方の実験により、GETFは復元精度、潜伏構造の抽出性能を大幅に向上し、他の最先端手法よりも桁違いに高速であることが示された。
論文 参考訳(メタデータ) (2020-07-31T03:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。