Performance Guaranteed Poisoning Attacks in Federated Learning: A Sliding Mode Approach
- URL: http://arxiv.org/abs/2505.16403v2
- Date: Thu, 29 May 2025 00:20:42 GMT
- Title: Performance Guaranteed Poisoning Attacks in Federated Learning: A Sliding Mode Approach
- Authors: Huazi Pan, Yanjun Zhang, Leo Yu Zhang, Scott Adams, Abbas Kouzani, Suiyang Khoo,
- Abstract summary: We introduce a novel attack method, named Federated Learning Sliding Attack (FedSA) scheme.<n>FedSA aims at precisely introducing the extent of poisoning in a subtle controlled manner.<n>It can manipulate the updates from malicious clients to drive the global model towards a compromised state.
- Score: 6.030020288981955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulation of local training data and local updates, i.e., the poisoning attack, is the main threat arising from the collaborative nature of the federated learning (FL) paradigm. Most existing poisoning attacks aim to manipulate local data/models in a way that causes denial-of-service (DoS) issues. In this paper, we introduce a novel attack method, named Federated Learning Sliding Attack (FedSA) scheme, aiming at precisely introducing the extent of poisoning in a subtle controlled manner. It operates with a predefined objective, such as reducing global model's prediction accuracy by 10%. FedSA integrates robust nonlinear control-Sliding Mode Control (SMC) theory with model poisoning attacks. It can manipulate the updates from malicious clients to drive the global model towards a compromised state, achieving this at a controlled and inconspicuous rate. Additionally, leveraging the robust control properties of FedSA allows precise control over the convergence bounds, enabling the attacker to set the global accuracy of the poisoned model to any desired level. Experimental results demonstrate that FedSA can accurately achieve a predefined global accuracy with fewer malicious clients while maintaining a high level of stealth and adjustable learning rates.
Related papers
- Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model.
Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness.
We present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL.
arXiv Detail & Related papers (2024-04-05T14:37:49Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks [12.580891810557482]
Federated learning (FL) is attractive for pulling privacy-preserving distributed training data.
We propose a self-purified FL (SPFL) method that enables benign clients to exploit trusted historical features of locally purified model.
We experimentally demonstrate that SPFL outperforms state-of-the-art FL defenses against various poisoning attacks.
arXiv Detail & Related papers (2023-09-19T13:31:33Z) - Denial-of-Service or Fine-Grained Control: Towards Flexible Model Poisoning Attacks on Federated Learning [20.737871279189]
Federated learning (FL) is vulnerable to poisoning attacks, where adversaries corrupt the global aggregation results and cause denial-of-service (DoS)
We propose a Flexible Model Poisoning Attack (FMPA) that can achieve versatile attack goals.
Experiments show that FMPA significantly decreases the global accuracy, outperforming six state-of-the-art attacks.
arXiv Detail & Related papers (2023-04-21T07:19:41Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - MPAF: Model Poisoning Attacks to Federated Learning based on Fake
Clients [51.973224448076614]
We propose the first Model Poisoning Attack based on Fake clients called MPAF.
MPAF can significantly decrease the test accuracy of the global model, even if classical defenses and norm clipping are adopted.
arXiv Detail & Related papers (2022-03-16T14:59:40Z) - SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with
Sparsification [24.053704318868043]
In model poisoning attacks, the attacker reduces the model's performance on targeted sub-tasks by uploading "poisoned" updates.
We introduce algoname, a novel defense that uses global top-k update sparsification and device-level clipping gradient to mitigate model poisoning attacks.
arXiv Detail & Related papers (2021-12-12T16:34:52Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
arXiv Detail & Related papers (2021-06-18T08:29:53Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.