Causal-Invariant Cross-Domain Out-of-Distribution Recommendation
- URL: http://arxiv.org/abs/2505.16532v1
- Date: Thu, 22 May 2025 11:21:51 GMT
- Title: Causal-Invariant Cross-Domain Out-of-Distribution Recommendation
- Authors: Jiajie Zhu, Yan Wang, Feng Zhu, Pengfei Ding, Hongyang Liu, Zhu Sun,
- Abstract summary: Cross-Domain Recommendation (CDR) aims to leverage knowledge from a relatively data-richer source domain to address the data sparsity problem.<n>While CDR methods need to address the distribution shifts between different domains, they typically assume independent and identical distribution.<n>We propose a novel Causal-Invariant Cross-Domain Out-of-distribution Recommendation framework, called CICDOR.
- Score: 15.522907452605788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-Domain Recommendation (CDR) aims to leverage knowledge from a relatively data-richer source domain to address the data sparsity problem in a relatively data-sparser target domain. While CDR methods need to address the distribution shifts between different domains, i.e., cross-domain distribution shifts (CDDS), they typically assume independent and identical distribution (IID) between training and testing data within the target domain. However, this IID assumption rarely holds in real-world scenarios due to single-domain distribution shift (SDDS). The above two co-existing distribution shifts lead to out-of-distribution (OOD) environments that hinder effective knowledge transfer and generalization, ultimately degrading recommendation performance in CDR. To address these co-existing distribution shifts, we propose a novel Causal-Invariant Cross-Domain Out-of-distribution Recommendation framework, called CICDOR. In CICDOR, we first learn dual-level causal structures to infer domain-specific and domain-shared causal-invariant user preferences for tackling both CDDS and SDDS under OOD environments in CDR. Then, we propose an LLM-guided confounder discovery module that seamlessly integrates LLMs with a conventional causal discovery method to extract observed confounders for effective deconfounding, thereby enabling accurate causal-invariant preference inference. Extensive experiments on two real-world datasets demonstrate the superior recommendation accuracy of CICDOR over state-of-the-art methods across various OOD scenarios.
Related papers
- Cross-Domain Recommendation Meets Large Language Models [3.1519384727993582]
Cross-domain recommendation (CDR) has emerged as a promising solution to the cold-start problem.<n>Existing CDR models rely on complex neural architectures, large datasets, and significant computational resources.<n>In this work, we leverage the reasoning capabilities of large language models (LLMs) and explore their performance in the CDR domain.
arXiv Detail & Related papers (2024-11-29T17:25:00Z) - A Centralized-Distributed Transfer Model for Cross-Domain Recommendation Based on Multi-Source Heterogeneous Transfer Learning [7.522103690277754]
Cross-domain recommendation (CDR) methods are proposed to tackle the sparsity problem in click through rate (CTR) estimation.
Existing CDR methods directly transfer knowledge from the source domains to the target domain and ignore the heterogeneities among domains.
We propose a centralized-distributed transfer model (CDTM) for CDR based on multi-source heterogeneous transfer learning.
arXiv Detail & Related papers (2024-11-14T08:53:23Z) - CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised Domain
Adaptation [20.589323508870592]
Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain by effectively utilizing source domain data and a few labeled target samples.
We show that the proposed model significantly outperforms SOTA methods in terms of effectiveness and generalisability on SSDA datasets.
arXiv Detail & Related papers (2023-03-30T16:48:28Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.