Auto-nnU-Net: Towards Automated Medical Image Segmentation
- URL: http://arxiv.org/abs/2505.16561v3
- Date: Tue, 27 May 2025 06:46:06 GMT
- Title: Auto-nnU-Net: Towards Automated Medical Image Segmentation
- Authors: Jannis Becktepe, Leona Hennig, Steffen Oeltze-Jafra, Marius Lindauer,
- Abstract summary: Medical Image Decathlon (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding best segmentation model.<n>The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration.<n>We propose AutonnU-Net, a novel nnU-Net variant enabling hyper parameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS.
- Score: 14.342326020477723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical Image Segmentation (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding the best segmentation model. The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration but remains constrained by fixed hyperparameters and heuristic design choices. As a full-AutoML framework for MIS, we propose Auto-nnU-Net, a novel nnU-Net variant enabling hyperparameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS (HNAS). Additionally, we propose Regularized PriorBand to balance model accuracy with the computational resources required for training, addressing the resource constraints often faced in real-world medical settings that limit the feasibility of extensive training procedures. We evaluate our approach across diverse MIS datasets from the well-established Medical Segmentation Decathlon, analyzing the impact of AutoML techniques on segmentation performance, computational efficiency, and model design choices. The results demonstrate that our AutoML approach substantially improves the segmentation performance of nnU-Net on 6 out of 10 datasets and is on par on the other datasets while maintaining practical resource requirements. Our code is available at https://github.com/automl/AutoNNUnet.
Related papers
- LEMUR Neural Network Dataset: Towards Seamless AutoML [34.04248949660201]
We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures.<n>LEMUR is primarily designed to enable fine-tuning of large language models for automated machine learning tasks.<n>LEMUR will be released as an open source project under the MIT license upon acceptance of the paper.
arXiv Detail & Related papers (2025-04-14T09:08:00Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - AutoXPCR: Automated Multi-Objective Model Selection for Time Series
Forecasting [1.0515439489916734]
We propose AutoXPCR - a novel method for automated and explainable multi-objective model selection.
Our approach leverages meta-learning to estimate any model's performance along PCR criteria, which encompass (P)redictive error, (C)omplexity, and (R)esource demand.
Our method clearly outperforms other model selection approaches - on average, it only requires 20% of computation costs for recommending models with 90% of the best-possible quality.
arXiv Detail & Related papers (2023-12-20T14:04:57Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - AutoTransfer: AutoML with Knowledge Transfer -- An Application to Graph
Neural Networks [75.11008617118908]
AutoML techniques consider each task independently from scratch, leading to high computational cost.
Here we propose AutoTransfer, an AutoML solution that improves search efficiency by transferring the prior architectural design knowledge to the novel task of interest.
arXiv Detail & Related papers (2023-03-14T07:23:16Z) - IoT Data Analytics in Dynamic Environments: From An Automated Machine
Learning Perspective [10.350337750192997]
We conduct a review of existing methods in the model selection, tuning, and updating procedures in the area of AutoML.
To justify our findings and help industrial users and researchers better implement AutoML approaches, a case study of applying AutoML to IoT anomaly detection problems is conducted.
arXiv Detail & Related papers (2022-09-16T16:02:56Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
This paper proposes IterMiUnet, a new lightweight convolution-based segmentation model.
It overcomes its heavily parametrized nature by incorporating the encoder-decoder structure of MiUnet model within it.
The proposed model has a lot of potential to be utilized as a tool for the early diagnosis of many diseases.
arXiv Detail & Related papers (2022-08-02T14:33:14Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
novel platform Resource-Aware AutoML (RA-AutoML)
RA-AutoML enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives.
arXiv Detail & Related papers (2020-10-30T19:37:48Z) - NASirt: AutoML based learning with instance-level complexity information [0.0]
We present NASirt, an AutoML methodology that finds high accuracy CNN architectures for spectral datasets.
Our method performs, in most cases, better than the benchmarks, achieving average accuracy as high as 97.40%.
arXiv Detail & Related papers (2020-08-26T22:21:44Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z) - AutoFIS: Automatic Feature Interaction Selection in Factorization Models
for Click-Through Rate Prediction [75.16836697734995]
We propose a two-stage algorithm called Automatic Feature Interaction Selection (AutoFIS)
AutoFIS can automatically identify important feature interactions for factorization models with computational cost just equivalent to training the target model to convergence.
AutoFIS has been deployed onto the training platform of Huawei App Store recommendation service.
arXiv Detail & Related papers (2020-03-25T06:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.