PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics
- URL: http://arxiv.org/abs/2505.16992v1
- Date: Thu, 22 May 2025 17:55:10 GMT
- Title: PICT -- A Differentiable, GPU-Accelerated Multi-Block PISO Solver for Simulation-Coupled Learning Tasks in Fluid Dynamics
- Authors: Aleksandra Franz, Hao Wei, Luca Guastoni, Nils Thuerey,
- Abstract summary: We present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support.<n>We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks.<n>We show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D.
- Score: 59.38498811984876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite decades of advancements, the simulation of fluids remains one of the most challenging areas of in scientific computing. Supported by the necessity of gradient information in deep learning, differentiable simulators have emerged as an effective tool for optimization and learning in physics simulations. In this work, we present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support. We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks like lid-driven cavities and turbulent channel flows before we show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D. We apply both supervised and unsupervised training regimes using physical priors to match flow statistics. In particular, we learn a stable sub-grid scale (SGS) model for a 3D turbulent channel flow purely based on reference statistics. The low-resolution corrector trained with our solver runs substantially faster than the highly resolved references, while keeping or even surpassing their accuracy. Finally, we give additional insights into the physical interpretation of different solver gradients, and motivate a physically informed regularization technique. To ensure that the full potential of PICT can be leveraged, it is published as open source: https://github.com/tum-pbs/PICT.
Related papers
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Generalizable data-driven turbulence closure modeling on unstructured grids with differentiable physics [1.8749305679160366]
We introduce a framework for embedding deep learning models within a generic finite element solver to solve the Navier-Stokes equations.
We validate our method for flow over a backwards-facing step and test its performance on novel geometries.
We show that our GNN-based closure model may be learned in a data-limited scenario by interpreting closure modeling as a solver-constrained optimization.
arXiv Detail & Related papers (2023-07-25T14:27:49Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Improving Gradient Computation for Differentiable Physics Simulation
with Contacts [10.450509067356148]
We study differentiable rigid-body simulation with contacts.
We propose to improve gradient computation by continuous collision detection and leverage the time-of-impact (TOI)
We show that with TOI-Ve, we are able to learn an optimal control sequence that matches the analytical solution.
arXiv Detail & Related papers (2023-04-28T21:10:16Z) - Deep Surrogate for Direct Time Fluid Dynamics [44.62475518267084]
Graph Neural Networks (GNN) can address the specificity of the irregular meshes commonly used in CFD simulations.
We present our ongoing work to design a novel direct time GNN architecture for irregular meshes.
arXiv Detail & Related papers (2021-12-16T10:08:20Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
We present gradSim, a framework that overcomes the dependence on 3D supervision by leveraging differentiable multiphysics simulation and differentiable rendering.
Our unified graph enables learning in challenging visuomotor control tasks, without relying on state-based (3D) supervision.
arXiv Detail & Related papers (2021-04-06T16:32:01Z) - Physics-based Differentiable Depth Sensor Simulation [5.134435281973137]
We introduce a novel end-to-end differentiable simulation pipeline for the generation of realistic 2.5D scans.
Each module can be differentiated w.r.t sensor and scene parameters.
Our simulation greatly improves the performance of the resulting models on real scans.
arXiv Detail & Related papers (2021-03-30T17:59:43Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z) - Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D [4.981834139548193]
In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D.
We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity.
Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.
arXiv Detail & Related papers (2020-12-22T09:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.