Distillation-Enabled Knowledge Alignment Protocol for Semantic Communication in AI Agent Networks
- URL: http://arxiv.org/abs/2505.17030v1
- Date: Wed, 07 May 2025 14:45:02 GMT
- Title: Distillation-Enabled Knowledge Alignment Protocol for Semantic Communication in AI Agent Networks
- Authors: Jingzhi Hu, Geoffrey Ye Li,
- Abstract summary: We propose a distillation-enabled knowledge alignment protocol (DeKAP) for massive artificial intelligence (AI) agents.<n>The DeKAP distills the expert knowledge of each agent into parameter-efficient low-rank matrices, allocates them across the network, and allows agents to simultaneously maintain aligned knowledge for multiple tasks.<n>We formulate the joint minimization of alignment loss, communication overhead, and storage cost as a large-scale integer linear programming problem.
- Score: 38.5438416972178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future networks are envisioned to connect massive artificial intelligence (AI) agents, enabling their extensive collaboration on diverse tasks. Compared to traditional entities, these agents naturally suit the semantic communication (SC), which can significantly enhance the bandwidth efficiency. Nevertheless, SC requires the knowledge among agents to be aligned, while agents have distinct expert knowledge for their individual tasks in practice. In this paper, we propose a distillation-enabled knowledge alignment protocol (DeKAP), which distills the expert knowledge of each agent into parameter-efficient low-rank matrices, allocates them across the network, and allows agents to simultaneously maintain aligned knowledge for multiple tasks. We formulate the joint minimization of alignment loss, communication overhead, and storage cost as a large-scale integer linear programming problem and develop a highly efficient greedy algorithm. From computer simulation, the DeKAP establishes knowledge alignment with the lowest communication and computation resources compared to conventional approaches.
Related papers
- KP-A: A Unified Network Knowledge Plane for Catalyzing Agentic Network Intelligence [8.933721953167115]
Large language models (LLMs) and agentic systems are enabling autonomous 6G networks with advanced intelligence.<n>We propose KP-A: a unified Network Knowledge Plane specifically designed for Agentic network intelligence.<n>We demonstrate KP-A in two representative intelligence tasks: live network knowledge Q&A and edge AI service orchestration.
arXiv Detail & Related papers (2025-07-10T20:54:36Z) - Co-Saving: Resource Aware Multi-Agent Collaboration for Software Development [65.94639060883475]
We propose a resource-aware multi-agent system -- Co-Saving.<n>Our key innovation is the introduction of "shortcuts"<n>Compared to the state-of-the-art MAS ChatDev, our method achieves an average reduction of 50.85% in token usage.
arXiv Detail & Related papers (2025-05-28T02:23:53Z) - AgentNet: Decentralized Evolutionary Coordination for LLM-based Multi-Agent Systems [22.291969093748005]
AgentNet is a decentralized, Retrieval-Augmented Generation (RAG)-based framework for multi-agent systems.<n>Unlike traditional multi-agent systems that depend on static assignments or centralized control, AgentNet allows agents to specialize dynamically.<n>AgentNet promotes scalable adaptability and enables privacy-preserving collaboration across organizations.
arXiv Detail & Related papers (2025-04-01T09:45:25Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Age of Information Aware VNF Scheduling in Industrial IoT Using Deep
Reinforcement Learning [9.780232937571599]
Deep reinforcement learning (DRL) has appeared as a viable way to solve such problems.
In this paper, we first utilize single agent low-complex compound action actor-critic RL to cover both discrete and continuous actions.
We then extend our solution to a multi-agent DRL scheme in which agents collaborate with each other.
arXiv Detail & Related papers (2021-05-10T09:04:49Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Learning Multi-Agent Coordination through Connectivity-driven
Communication [7.462336024223669]
In artificial multi-agent systems, the ability to learn collaborative policies is predicated upon the agents' communication skills.
We present a deep reinforcement learning approach, Connectivity Driven Communication (CDC)
CDC is able to learn effective collaborative policies and can over-perform competing learning algorithms on cooperative navigation tasks.
arXiv Detail & Related papers (2020-02-12T20:58:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.