論文の概要: Mitigating Cyber Risk in the Age of Open-Weight LLMs: Policy Gaps and Technical Realities
- arxiv url: http://arxiv.org/abs/2505.17109v1
- Date: Wed, 21 May 2025 11:35:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.572864
- Title: Mitigating Cyber Risk in the Age of Open-Weight LLMs: Policy Gaps and Technical Realities
- Title(参考訳): オープンウェイトLDM時代のサイバーリスクの軽減--政策ギャップと技術的現実
- Authors: Alfonso de Gregorio,
- Abstract要約: オープンウェイト汎用AI(GPAI)モデルには大きなメリットがあるが、重大なサイバーセキュリティリスクも伴う。
本稿では、オープンウェイトAIリリースによって拡大した、マルウェア開発とソーシャルエンジニアリングの強化を含む、特定の脅威を分析する。
本稿では,モデル全体ではなく,特定のハイリスク機能の評価と制御に重点を置く経路を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-weight general-purpose AI (GPAI) models offer significant benefits but also introduce substantial cybersecurity risks, as demonstrated by the offensive capabilities of models like DeepSeek-R1 in evaluations such as MITRE's OCCULT. These publicly available models empower a wider range of actors to automate and scale cyberattacks, challenging traditional defence paradigms and regulatory approaches. This paper analyzes the specific threats -- including accelerated malware development and enhanced social engineering -- magnified by open-weight AI release. We critically assess current regulations, notably the EU AI Act and the GPAI Code of Practice, identifying significant gaps stemming from the loss of control inherent in open distribution, which renders many standard security mitigations ineffective. We propose a path forward focusing on evaluating and controlling specific high-risk capabilities rather than entire models, advocating for pragmatic policy interpretations for open-weight systems, promoting defensive AI innovation, and fostering international collaboration on standards and cyber threat intelligence (CTI) sharing to ensure security without unduly stifling open technological progress.
- Abstract(参考訳): オープンウェイト汎用AI(GPAI)モデルは大きなメリットを提供するが、MITREのOCCULTのような評価においてDeepSeek-R1のようなモデルの攻撃的能力によって実証されるような、重大なサイバーセキュリティリスクももたらす。
これらの公開モデルは、幅広いアクターに対して、サイバー攻撃の自動化とスケール、従来の防衛パラダイムと規制アプローチに挑戦する権限を与える。
本稿では、オープンウェイトAIリリースによって拡大した、マルウェア開発とソーシャルエンジニアリングの強化を含む、特定の脅威を分析する。
我々は、現在の規制、特にEU AI ActとGPAI Code of Practiceを批判的に評価し、オープンディストリビューションに固有のコントロールの喪失に起因する重大なギャップを特定します。
我々は、モデル全体よりも特定の高リスク能力を評価・制御することに注力し、オープンウェイトシステムの実用的ポリシー解釈を提唱し、AI革新を擁護し、オープンな技術進歩を損なうことなくセキュリティを確保するために、標準とサイバー脅威情報(CTI)の共有に関する国際協力を促進します。
関連論文リスト
- Offensive Security for AI Systems: Concepts, Practices, and Applications [0.0]
従来の防御策は、AI駆動技術に直面するユニークで進化する脅威に対して、しばしば不足する。
本稿では、AIライフサイクル全体を通して脆弱性を明らかにするために、積極的な脅威シミュレーションと敵対的なテストを強調する。
論文 参考訳(メタデータ) (2025-05-09T18:58:56Z) - Threat Modeling for AI: The Case for an Asset-Centric Approach [0.23408308015481666]
AIシステムは、自律的にコードを実行し、外部システムと対話し、人間の監視なしに運用することが可能になった。
AIシステムが自律的にコードを実行し、外部システムと対話し、人間の監視なしに運用できるようになったことで、従来のセキュリティアプローチは不足する。
本稿では、脅威モデリングAIシステムのための資産中心の方法論を紹介する。
論文 参考訳(メタデータ) (2025-05-08T18:57:08Z) - In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI [93.33036653316591]
我々はシステムの安全性を高めるために3つの介入を要求します。
まず、標準化されたAI欠陥レポートと研究者へのエンゲージメントのルールを用いることを提案する。
第2に,GPAIシステムプロバイダが広視野欠陥開示プログラムを採用することを提案する。
第3に,欠陥報告の分布を調整するための改良されたインフラの開発を提唱する。
論文 参考訳(メタデータ) (2025-03-21T05:09:46Z) - Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
我々は、防衛、金融、医療、教育といった高度な領域に展開するAI技術を規制するために設計された包括的なフレームワークを開発する。
本手法では,厳密な技術的分析,定量的リスク評価,規範的評価を併用して,システム的脆弱性を暴露する。
論文 参考訳(メタデータ) (2025-03-09T03:11:32Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Asset-centric Threat Modeling for AI-based Systems [7.696807063718328]
本稿では、AI関連資産、脅威、対策、残留リスクの定量化のためのアプローチおよびツールであるThreatFinderAIを提案する。
このアプローチの実用性を評価するため、参加者はAIベースのヘルスケアプラットフォームのサイバーセキュリティ専門家によって開発された脅威モデルを再現するよう命じられた。
全体として、ソリューションのユーザビリティはよく認識され、脅威の識別とリスクの議論を効果的にサポートする。
論文 参考訳(メタデータ) (2024-03-11T08:40:01Z) - Coordinated Flaw Disclosure for AI: Beyond Security Vulnerabilities [1.3225694028747144]
本稿では,機械学習(ML)問題の複雑度に合わせたコーディネート・フレーバー開示フレームワークを提案する。
本フレームワークは,拡張モデルカード,ダイナミックスコープ拡張,独立適応パネル,自動検証プロセスなどのイノベーションを導入している。
CFDはAIシステムに対する公的な信頼を著しく向上させる可能性があると我々は主張する。
論文 参考訳(メタデータ) (2024-02-10T20:39:04Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。