論文の概要: DailyQA: A Benchmark to Evaluate Web Retrieval Augmented LLMs Based on Capturing Real-World Changes
- arxiv url: http://arxiv.org/abs/2505.17162v1
- Date: Thu, 22 May 2025 15:13:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.623818
- Title: DailyQA: A Benchmark to Evaluate Web Retrieval Augmented LLMs Based on Capturing Real-World Changes
- Title(参考訳): DailyQA: 実世界の変化を捉えたWeb検索拡張LDMの評価ベンチマーク
- Authors: Jiehan Cheng, Zhicheng Dou,
- Abstract要約: DailyQAは自動更新された動的データセットで、毎週質問を更新し、特定の日付に関する質問に対する回答を含む。
このベンチマークでは、高速な事実データと複数のドメインをカバーすることを含む質問を処理および回答するために、大きな言語モデル(LLM)が必要である。
- 参考スコア(独自算出の注目度): 20.967149298479672
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose DailyQA, an automatically updated dynamic dataset that updates questions weekly and contains answers to questions on any given date. DailyQA utilizes daily updates from Wikipedia revision logs to implement a fully automated pipeline of data filtering, query generation synthesis, quality checking, answer extraction, and query classification. The benchmark requires large language models (LLMs) to process and answer questions involving fast-changing factual data and covering multiple domains. We evaluate several open-source and closed-source LLMs using different RAG pipelines with web search augmentation. We compare the ability of different models to process time-sensitive web information and find that rerank of web retrieval results is critical. Our results indicate that LLMs still face significant challenges in handling frequently updated information, suggesting that DailyQA benchmarking provides valuable insights into the direction of progress for LLMs and RAG systems.
- Abstract(参考訳): 自動更新された動的データセットであるDailyQAを提案する。
DailyQAはウィキペディアのリビジョンログからの日々のアップデートを利用して、データフィルタリング、クエリ生成合成、品質チェック、回答抽出、クエリ分類の完全な自動化パイプラインを実装している。
このベンチマークでは、高速な事実データと複数のドメインをカバーすることを含む質問を処理および回答するために、大きな言語モデル(LLM)が必要である。
各種RAGパイプラインとWeb検索拡張を用いたオープンソースおよびクローズドソースLLMの評価を行った。
異なるモデルが時間に敏感なWeb情報を処理する能力を比較し、Web検索結果の再帰が重要であることを確かめる。
以上の結果から,LLMは頻繁に更新される情報を扱う上でも重要な課題に直面しており,DailyQAベンチマークはLLMとRAGシステムの進行方向に関する貴重な洞察を提供すると考えられる。
関連論文リスト
- QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
検索拡張現実(RAG)を備えた大規模言語モデル(LLM)は、スケーラブルな生成AIソリューションに最適な選択肢である。
本研究では,データ認証,ユーザクエリルーティング,データ検索,エンタープライズデータテーブルからの質問応答機能へのカスタムプロンプトを実現するために,複数のLLMを起動可能なLLMベースのユニークなシステムを提案する。
提案するシステムと評価基準は,持続可能性,財務状況,ソーシャルメディア領域において,数百のユーザクエリに対して,90%以上の信頼性スコアを達成している。
論文 参考訳(メタデータ) (2024-05-07T02:49:59Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
LLM-as-compilerアプローチであるSEEDは,Large Language Models(LLM)を介して,ドメイン固有のデータキュレーションソリューションを自動的に生成する。
SEEDは、4つのLCMアシストモジュールから自動的に選択し、そのタスクに最も適したハイブリッド実行パイプラインを形成する。
論文 参考訳(メタデータ) (2023-10-01T17:59:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。