論文の概要: MEDMKG: Benchmarking Medical Knowledge Exploitation with Multimodal Knowledge Graph
- arxiv url: http://arxiv.org/abs/2505.17214v1
- Date: Thu, 22 May 2025 18:41:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.653327
- Title: MEDMKG: Benchmarking Medical Knowledge Exploitation with Multimodal Knowledge Graph
- Title(参考訳): MEDMKG:マルチモーダル知識グラフによる医療知識の爆発のベンチマーク
- Authors: Xiaochen Wang, Yuan Zhong, Lingwei Zhang, Lisong Dai, Ting Wang, Fenglong Ma,
- Abstract要約: 医用マルチモーダル知識グラフであるMEDMKGを提案する。
我々は,3つのタスクにまたがるMEDMKGを2つの実験的な設定で評価し,24のベースライン法と4つの最先端のビジョン言語バックボーンを6つのデータセットでベンチマークした。
その結果,MEDMKGは下流医療タスクの性能向上だけでなく,医療人工知能におけるマルチモーダル知識統合のための適応的かつ堅牢な戦略開発のための強力な基盤を提供することがわかった。
- 参考スコア(独自算出の注目度): 28.79000907242469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical deep learning models depend heavily on domain-specific knowledge to perform well on knowledge-intensive clinical tasks. Prior work has primarily leveraged unimodal knowledge graphs, such as the Unified Medical Language System (UMLS), to enhance model performance. However, integrating multimodal medical knowledge graphs remains largely underexplored, mainly due to the lack of resources linking imaging data with clinical concepts. To address this gap, we propose MEDMKG, a Medical Multimodal Knowledge Graph that unifies visual and textual medical information through a multi-stage construction pipeline. MEDMKG fuses the rich multimodal data from MIMIC-CXR with the structured clinical knowledge from UMLS, utilizing both rule-based tools and large language models for accurate concept extraction and relationship modeling. To ensure graph quality and compactness, we introduce Neighbor-aware Filtering (NaF), a novel filtering algorithm tailored for multimodal knowledge graphs. We evaluate MEDMKG across three tasks under two experimental settings, benchmarking twenty-four baseline methods and four state-of-the-art vision-language backbones on six datasets. Results show that MEDMKG not only improves performance in downstream medical tasks but also offers a strong foundation for developing adaptive and robust strategies for multimodal knowledge integration in medical artificial intelligence.
- Abstract(参考訳): 医学的な深層学習モデルは、知識集約的な臨床タスクでうまく機能するために、ドメイン固有の知識に大きく依存する。
これまでの作業では、UMLS(Unified Medical Language System)など、一様知識グラフを主に活用して、モデルの性能を高めてきた。
しかし、画像データと臨床概念を結びつけるリソースが不足しているため、マルチモーダルな医療知識グラフの統合は未熟なままである。
このギャップに対処するために,多段階構築パイプラインを通じて視覚的およびテキスト的医療情報を統一する医療用マルチモーダル知識グラフMEDMKGを提案する。
MEDMKGは、MIMIC-CXRの豊富なマルチモーダルデータをUMLSの構造化された臨床知識と融合させ、ルールベースのツールと大規模言語モデルの両方を利用して正確な概念抽出と関係モデリングを行う。
グラフの品質とコンパクト性を確保するため,マルチモーダル知識グラフに適した新しいフィルタリングアルゴリズムであるNeighbor-aware Filtering (NaF)を導入する。
我々は,3つのタスクにまたがるMEDMKGを2つの実験的な設定で評価し,24のベースライン法と4つの最先端のビジョン言語バックボーンを6つのデータセットでベンチマークした。
その結果,MEDMKGは下流医療タスクの性能向上だけでなく,医療人工知能におけるマルチモーダル知識統合のための適応的かつ堅牢な戦略開発のための強力な基盤を提供することがわかった。
関連論文リスト
- FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
本研究は,フェデレート・ラーニング・フレームワーク内で医療基盤モデルを拡張するための新しい知識注入手法であるFedKIMを紹介する。
FedKIMは軽量なローカルモデルを活用して、プライベートデータから医療知識を抽出し、この知識を集中基盤モデルに統合する。
7つのモードで12タスクを対象に実験を行い,FedKIMの有効性について検討した。
論文 参考訳(メタデータ) (2024-08-17T15:42:29Z) - EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGEはRetrieval-Augmented Generation(RAG)駆動のフレームワークであり、マルチモーダルEHR予測モデリングを強化する。
時系列データと臨床ノートからエンティティを抽出し,LLM(Large Language Models)を誘導し,プロのPrimeKGと整合させる。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Multi-modal Graph Learning over UMLS Knowledge Graphs [1.6311327256285293]
医療概念の有意義な表現を学習するためのMMUGL(Multi-Modal UMLS Graph Learning)を提案する。
これらの表現は、患者の訪問全体を表すために集約され、シークエンスモデルに入力され、患者の複数の病院訪問の粒度で予測される。
論文 参考訳(メタデータ) (2023-07-10T10:16:57Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。