Improved and Oracle-Efficient Online $\ell_1$-Multicalibration
- URL: http://arxiv.org/abs/2505.17365v2
- Date: Thu, 29 May 2025 02:21:58 GMT
- Title: Improved and Oracle-Efficient Online $\ell_1$-Multicalibration
- Authors: Rohan Ghuge, Vidya Muthukumar, Sahil Singla,
- Abstract summary: We study emphonline multicalibration, a framework for ensuring calibrated predictions across multiple groups in adversarial settings.<n>We propose a direct method that achieves improved and oracle-efficient rates of $widetildemathcalO(T-1/4)$.<n>Our framework also extends to certain infinite families of groups by exploiting a $1$-Lipschitz property of the (ell_H)-multicalibration error.
- Score: 14.147331133778916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study \emph{online multicalibration}, a framework for ensuring calibrated predictions across multiple groups in adversarial settings, across $T$ rounds. Although online calibration is typically studied in the $\ell_1$ norm, prior approaches to online multicalibration have taken the indirect approach of obtaining rates in other norms (such as $\ell_2$ and $\ell_{\infty}$) and then transferred these guarantees to $\ell_1$ at additional loss. In contrast, we propose a direct method that achieves improved and oracle-efficient rates of $\widetilde{\mathcal{O}}(T^{-1/3})$ and $\widetilde{\mathcal{O}}(T^{-1/4})$ respectively, for online $\ell_1$-multicalibration. Our key insight is a novel reduction of online \(\ell_1\)-multicalibration to an online learning problem with product-based rewards, which we refer to as \emph{online linear-product optimization} ($\mathtt{OLPO}$). To obtain the improved rate of $\widetilde{\mathcal{O}}(T^{-1/3})$, we introduce a linearization of $\mathtt{OLPO}$ and design a no-regret algorithm for this linearized problem. Although this method guarantees the desired sublinear rate (nearly matching the best rate for online calibration), it is computationally expensive when the group family \(\mathcal{H}\) is large or infinite, since it enumerates all possible groups. To address scalability, we propose a second approach to $\mathtt{OLPO}$ that makes only a polynomial number of calls to an offline optimization (\emph{multicalibration evaluation}) oracle, resulting in \emph{oracle-efficient} online \(\ell_1\)-multicalibration with a rate of $\widetilde{\mathcal{O}}(T^{-1/4})$. Our framework also extends to certain infinite families of groups (e.g., all linear functions on the context space) by exploiting a $1$-Lipschitz property of the \(\ell_1\)-multicalibration error with respect to \(\mathcal{H}\).
Related papers
- High-Dimensional Calibration from Swap Regret [40.9736612423411]
We study the online calibration of multi-dimensional forecasts over an arbitrary convex set $mathcalP subset mathbbRd$.<n>We show that if it is possible to guarantee $O(sqrtrho T)$ worst-case regret after $T$ rounds, it is possible to obtain $epsilon$-calibrated forecasts after $T = exp(logd/epsilon2).
arXiv Detail & Related papers (2025-05-27T17:31:47Z) - Learning and Computation of $Φ$-Equilibria at the Frontier of Tractability [85.07238533644636]
$Phi$-equilibria is a powerful and flexible framework at the heart of online learning and game theory.<n>We show that an efficient online algorithm incurs average $Phi$-regret at most $epsilon$ using $textpoly(d, k)/epsilon2$ rounds.<n>We also show nearly matching lower bounds in the online setting, thereby obtaining for the first time a family of deviations that captures the learnability of $Phi$-regret.
arXiv Detail & Related papers (2025-02-25T19:08:26Z) - Federated Combinatorial Multi-Agent Multi-Armed Bandits [79.1700188160944]
This paper introduces a federated learning framework tailored for online optimization with bandit.
In this setting, agents subsets of arms, observe noisy rewards for these subsets without accessing individual arm information, and can cooperate and share information at specific intervals.
arXiv Detail & Related papers (2024-05-09T17:40:09Z) - Optimal and Efficient Algorithms for Decentralized Online Convex Optimization [51.00357162913229]
Decentralized online convex optimization (D-OCO) is designed to minimize a sequence of global loss functions using only local computations and communications.<n>We develop a novel D-OCO algorithm that can reduce the regret bounds for convex and strongly convex functions to $tildeO(nrho-1/4sqrtT)$ and $tildeO(nrho-1/2log T)$.<n>Our analysis reveals that the projection-free variant can achieve $O(nT3/4)$ and $O(n
arXiv Detail & Related papers (2024-02-14T13:44:16Z) - Fast Online Node Labeling for Very Large Graphs [11.700626862639131]
Current methods either invert a graph kernel runtime matrix with $mathcalO(n3)$ or $mathcalO(n2)$ space complexity or sample a large volume of random spanning trees.
We propose an improvement based on the textitonline relaxation technique introduced by a series of works.
arXiv Detail & Related papers (2023-05-25T17:13:08Z) - Perseus: A Simple and Optimal High-Order Method for Variational
Inequalities [81.32967242727152]
A VI involves finding $xstar in mathcalX$ such that $langle F(x), x - xstarrangle geq 0$ for all $x in mathcalX$.
We propose a $pth$-order method that does textitnot require any line search procedure and provably converges to a weak solution at a rate of $O(epsilon-2/(p+1))$.
arXiv Detail & Related papers (2022-05-06T13:29:14Z) - Nearly Horizon-Free Offline Reinforcement Learning [97.36751930393245]
We revisit offline reinforcement learning on episodic time-homogeneous Markov Decision Processes with $S$ states, $A$ actions and planning horizon $H$.
We obtain the first set of nearly $H$-free sample complexity bounds for evaluation and planning using the empirical MDPs.
arXiv Detail & Related papers (2021-03-25T18:52:17Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Variance-Aware Confidence Set: Variance-Dependent Bound for Linear
Bandits and Horizon-Free Bound for Linear Mixture MDP [76.94328400919836]
We show how to construct variance-aware confidence sets for linear bandits and linear mixture Decision Process (MDP)
For linear bandits, we obtain an $widetildeO(mathrmpoly(d)sqrt1 + sum_i=1Ksigma_i2) regret bound, where $d is the feature dimension.
For linear mixture MDP, we obtain an $widetildeO(mathrmpoly(d)sqrtK)$ regret bound, where
arXiv Detail & Related papers (2021-01-29T18:57:52Z) - Fast and Near-Optimal Diagonal Preconditioning [46.240079312553796]
We show how to best improve $mathbfA$'s condition number by left or right diagonal rescaling.
We give a solver for structured mixed packing and covering semidefinite programs which computes a constant-factor optimal scaling for $mathbfA$ in $widetildeO(textnnz(mathbfA) cdot textpoly(kappastar))$ time.
arXiv Detail & Related papers (2020-08-04T17:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.