論文の概要: Wildfire Detection Using Vision Transformer with the Wildfire Dataset
- arxiv url: http://arxiv.org/abs/2505.17395v1
- Date: Fri, 23 May 2025 02:08:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.768251
- Title: Wildfire Detection Using Vision Transformer with the Wildfire Dataset
- Title(参考訳): ワイルドファイアデータセットを用いた視覚変換器による山火事検出
- Authors: Gowtham Raj Vuppari, Navarun Gupta, Ahmed El-Sayed, Xingguo Xiong,
- Abstract要約: 2023年の山火事で全国で130人が死亡し、1990年以来の高水準となった。
ViT(Vision Transformers)のようなディープラーニングモデルは、複雑な画像データを高精度に処理することで早期検出を強化することができる。
しかし、山火事検出は高品質でリアルタイムなデータの提供を含む課題に直面している。
- 参考スコア(独自算出の注目度): 0.6229567287607896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The critical need for sophisticated detection techniques has been highlighted by the rising frequency and intensity of wildfires in the US, especially in California. In 2023, wildfires caused 130 deaths nationwide, the highest since 1990. In January 2025, Los Angeles wildfires which included the Palisades and Eaton fires burnt approximately 40,000 acres and 12,000 buildings, and caused loss of human lives. The devastation underscores the urgent need for effective detection and prevention strategies. Deep learning models, such as Vision Transformers (ViTs), can enhance early detection by processing complex image data with high accuracy. However, wildfire detection faces challenges, including the availability of high-quality, real-time data. Wildfires often occur in remote areas with limited sensor coverage, and environmental factors like smoke and cloud cover can hinder detection. Additionally, training deep learning models is computationally expensive, and issues like false positives/negatives and scaling remain concerns. Integrating detection systems with real-time alert mechanisms also poses difficulties. In this work, we used the wildfire dataset consisting of 10.74 GB high-resolution images categorized into 'fire' and 'nofire' classes is used for training the ViT model. To prepare the data, images are resized to 224 x 224 pixels, converted into tensor format, and normalized using ImageNet statistics.
- Abstract(参考訳): 高度な検知技術に対する重要なニーズは、特にカリフォルニアでは、米国の山火事の頻度と強度の上昇によって強調されている。
2023年の山火事で全国で130人が死亡し、1990年以来の高水準となった。
2025年1月、パリセードとイートンを含むロサンゼルスの山火事で約40,000エーカーと12,000の建物が焼失し、人命が失われた。
この破壊は、効果的な検出・予防戦略の緊急な必要性を浮き彫りにした。
ViT(Vision Transformers)のようなディープラーニングモデルは、複雑な画像データを高精度に処理することで早期検出を強化することができる。
しかし、山火事検出は高品質でリアルタイムなデータの提供を含む課題に直面している。
森林火災はセンサーが限られた遠隔地で発生し、煙や雲などの環境要因が検出を妨げることがある。
さらに、ディープラーニングモデルのトレーニングには計算コストがかかります。
検知システムとリアルタイム警告機構を統合することも困難である。
本研究では,10.74GBの高分解能画像からなる野火データセットを「火」クラスと「野火」クラスに分類し,ViTモデルのトレーニングに使用した。
データを作成するために、画像は224 x 224ピクセルにリサイズされ、テンソル形式に変換され、ImageNet統計を用いて正規化される。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
本研究は、アメリカ合衆国における山火事の検出および対処のための積極的な方法を検討する。
本研究の目的は,高度技術を用いた山火事の予防的検出と防止である。
AI対応のリモートセンシングや5Gベースのアクティブモニタリングなど、さまざまな方法により、アクティブな山火事の検出と管理が強化される。
論文 参考訳(メタデータ) (2024-02-27T04:09:30Z) - Two Scalable Approaches for Burned-Area Mapping Using U-Net and Landsat
Imagery [39.91303506884272]
本研究では,U-Netモデルに基づくバーン・エリアマッピングプロセスの自動化と最適化のための2つのアプローチを提案する。
研究領域の195の代表的な画像に基づくテストでは、ASモデルを用いたデータセットのバランスの向上により、より良いパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2023-11-29T05:42:25Z) - Wildfire Detection Via Transfer Learning: A Survey [2.766371147936368]
本稿では,山頂や森林見張り塔に設置した通常の視界カメラを用いて,山火事の検知に使用されるさまざまなニューラルネットワークモデルについて検討する。
ニューラルネットワークモデルはImageNet-1Kで事前トレーニングされ、カスタムの山火事データセットで微調整される。
論文 参考訳(メタデータ) (2023-06-21T13:57:04Z) - Multimodal Wildland Fire Smoke Detection [5.15911752972989]
研究によると、気候変動によって温暖な温度と乾燥状態が生まれ、長い山火事の季節と米国の山火事のリスクが増大する。
スモーキーネット(SmokeyNet)は,森林火災の煙を検出するための時間的情報を用いた深層学習モデルである。
SmokeyNetは、ほんの数分の時間で自動早期通知システムとして機能し、破壊的な山火事との戦いに有用なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T01:16:06Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
この研究は、AIが火災を検出し、認識し、画像ストリーム上のオブジェクト検出を使用して検出時間を短縮する可能性を検討する。
そこで我々は, YOLOv4オブジェクト検出器をベースとした複数のモデルのトレーニングと評価に使用されてきた複数の公開情報源から, 適切なデータを収集, ラベル付けした。
論文 参考訳(メタデータ) (2022-12-09T11:32:36Z) - Image-based Early Detection System for Wildfires [2.8494271563126676]
森林火災は土地の被害、財産の喪失、大気汚染、さらには人命の喪失を引き起こす破壊的な現象である。
本稿では,機械学習を用いて山火事の煙を高精度に検出するWildfire Detection and Alertシステムを提案する。
私たちの技術は現在、米国内で毎日何百ものカメラから送られてくるデータを監視するために使われています。
論文 参考訳(メタデータ) (2022-11-03T07:38:30Z) - FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time
Wildland Fire Smoke Detection [0.0]
Fire Ignition Library (FIgLib) は、25,000点近い山火事の煙画像のデータセットである。
SmokeyNetは、リアルタイムの山火事煙検知にカメラ画像からの時間情報を利用する、新しいディープラーニングアーキテクチャである。
FIgLibデータセットでトレーニングすると、SmokeyNetは同等のベースラインを上回り、人間のパフォーマンスに匹敵する。
論文 参考訳(メタデータ) (2021-12-16T03:49:58Z) - Preliminary Wildfire Detection Using State-of-the-art PTZ (Pan, Tilt,
Zoom) Camera Technology and Convolutional Neural Networks [0.0]
野生の火は、人間や自然によって引き起こされる可能性のある環境において、制御されていない火災である。
2020年だけで、カリフォルニア州の山火事は4200万エーカーの土地を燃やし、10,500の建物や建物を破壊し、31人以上が死んだ。
研究の目的は、森林火災が広がるのを防ぐため、初期の段階で森林火災を検出することである。
論文 参考訳(メタデータ) (2021-09-10T19:30:37Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
アンダーエクスポージャー地域は、安全な自動運転のための周囲の完全な認識を構築するのに不可欠である。
サーマルカメラが利用可能になったことで、他の光学センサーが解釈可能な信号を捉えていない地域を探索するための重要な代替手段となった。
本研究は,可視光画像から熱画像へ学習を伝達するためのスタイル伝達手法を用いたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。