Parametric excitations in a harmonically trapped binary Bose-Einstein condensate
- URL: http://arxiv.org/abs/2505.17409v1
- Date: Fri, 23 May 2025 02:52:45 GMT
- Title: Parametric excitations in a harmonically trapped binary Bose-Einstein condensate
- Authors: Meiling Wang, Juan Wang, Yan Li, Franco Dalfovo, Chunlei Qu,
- Abstract summary: We investigate pattern formation in a harmonically trapped two-component Bose-Einstein condensate.<n>Spin-dependent Faraday patterns can be generated with the two components exhibiting an out-of-phase density oscillation.
- Score: 9.12138897713409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate parametric excitation and pattern formation in a harmonically trapped two-component Bose-Einstein condensate. Near the miscible-immiscible phase transition, the excitations of total density and spin density are decoupled. By periodically modulating the atomic scattering lengths, spin-dependent Faraday patterns can be generated with the two components exhibiting an out-of-phase density oscillation. In an elongated condensate, the density pattern along the longitudinal direction corresponds to a one-dimensional spin Faraday pattern, where the modulation frequency and the spatial oscillation period are related to the velocity of the spin sound. After the spin pattern is fully developed, the system quickly enters a nonlinear destabilization regime. For a pancake-shaped condensate, a two-dimensional Faraday pattern is generated with an interesting l-fold rotational symmetry. The number of nodes along the radial and angular directions increases with larger modulation frequencies. We also compare the growth rates of spin Faraday patterns generated with different modulation protocols, which are accessible to current experiments.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID [0.0]
We show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system.
In particular, we show that within a determined rotation frequency interval, a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics.
arXiv Detail & Related papers (2021-11-19T14:47:54Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Spontaneous Formation of Star-Shaped Surface Patterns in a Driven
Bose-Einstein Condensate [0.0]
Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole to heptagon modes, are parametrically excited by modulating the scattering length near the Feshbach resonance.
Our work opens a new pathway for generating higher-lying collective excitations with applications.
arXiv Detail & Related papers (2021-05-20T14:46:28Z) - Many-Body Phases of a Planar Bose-Einstein Condensate with
Cavity-Induced Spin-Orbit Coupling [0.0]
We explore the many-body phases of a two-dimensional Bose-Einstein condensate with cavity-mediated spin-orbit coupling.
By the help of two transverse non-interfering, counterpropagating pump lasers and a single standing-wave cavity mode, two degenerate Zeeman sub-levels of the quantum gas are Raman coupled in a double-$Lambda$-configuration.
We identify three quantum phases with distinct atomic and photonic properties: the normal homogeneous'' phase, the superradiant spin-helix'' phase, and the superradiant
arXiv Detail & Related papers (2020-09-14T14:31:47Z) - Spin and density self-ordering in dynamic polarization gradients fields [0.0]
We study the zero-temperature quantum phase diagram for a two-component Bose-Einstein condensate in an optical cavity.
The two atomic spin states are Raman coupled by two transversely-polarized, blue detuned plane-wave lasers inducing a repulsive cavity potential.
We show that the atom-cavity system implements central aspects of the $t$-$J$-$V$-$W$ model with a rich phase diagram.
arXiv Detail & Related papers (2020-06-30T07:41:43Z) - Parametrically excited star-shaped patterns at the interface of binary
Bose-Einstein condensates [0.0]
A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis.
A heteronuclear system composed of $87$Rb-$85$Rb atoms can be used for the experimental realization of the phenomenon.
arXiv Detail & Related papers (2020-05-01T10:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.