HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2505.17431v1
- Date: Fri, 23 May 2025 03:27:04 GMT
- Title: HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting
- Authors: Boyuan Li, Yicheng Luo, Zhen Liu, Junhao Zheng, Jianming Lv, Qianli Ma,
- Abstract summary: Irregular multivariate time series (IMTS) are characterized by irregular time intervals within variables and unaligned observations across variables.<n>We propose HyperIMTS, a Hypergraph neural network for IMTS forecasting.<n> Experiments demonstrate HyperIMTS's competitive performance among state-of-the-art models in IMTS forecasting with low computational cost.
- Score: 24.29827089303662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Irregular multivariate time series (IMTS) are characterized by irregular time intervals within variables and unaligned observations across variables, posing challenges in learning temporal and variable dependencies. Many existing IMTS models either require padded samples to learn separately from temporal and variable dimensions, or represent original samples via bipartite graphs or sets. However, the former approaches often need to handle extra padding values affecting efficiency and disrupting original sampling patterns, while the latter ones have limitations in capturing dependencies among unaligned observations. To represent and learn both dependencies from original observations in a unified form, we propose HyperIMTS, a Hypergraph neural network for Irregular Multivariate Time Series forecasting. Observed values are converted as nodes in the hypergraph, interconnected by temporal and variable hyperedges to enable message passing among all observations. Through irregularity-aware message passing, HyperIMTS captures variable dependencies in a time-adaptive way to achieve accurate forecasting. Experiments demonstrate HyperIMTS's competitive performance among state-of-the-art models in IMTS forecasting with low computational cost.
Related papers
- MuSiCNet: A Gradual Coarse-to-Fine Framework for Irregularly Sampled Multivariate Time Series Analysis [45.34420094525063]
We introduce a novel perspective that irregularity is essentially relative in some senses.<n>MuSiCNet is an ISMTS analysis framework that competitive with SOTA in three mainstream tasks consistently.
arXiv Detail & Related papers (2024-12-02T02:50:01Z) - MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
Key research question is how to ensure imputation consistency, i.e., intra-consistency between observed and imputed values.
Previous methods rely solely on the inductive bias of the imputation targets to guide the learning process.
arXiv Detail & Related papers (2024-08-11T10:24:53Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
We present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution.
We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets.
arXiv Detail & Related papers (2024-07-18T06:16:03Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Graph-Aware Contrasting for Multivariate Time-Series Classification [50.84488941336865]
Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques.
We propose Graph-Aware Contrasting for spatial consistency across MTS data.
Our proposed method achieves state-of-the-art performance on various MTS classification tasks.
arXiv Detail & Related papers (2023-09-11T02:35:22Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Graph-Guided Network for Irregularly Sampled Multivariate Time Series [15.919269970122555]
We introduce RAINDROP, a graph-guided network for learning representations of irregularly sampled time series.
RAINDROP represents every sample as a graph, where nodes indicate sensors and edges represent dependencies between them.
We use RAINDROP to classify time series and interpret temporal dynamics of three healthcare and human activity datasets.
arXiv Detail & Related papers (2021-10-11T15:37:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.