論文の概要: Discretization-free Multicalibration through Loss Minimization over Tree Ensembles
- arxiv url: http://arxiv.org/abs/2505.17435v1
- Date: Fri, 23 May 2025 03:29:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.79393
- Title: Discretization-free Multicalibration through Loss Minimization over Tree Ensembles
- Title(参考訳): 木組上の損失最小化による離散化のない多重校正
- Authors: Hongyi Henry Jin, Zijun Ding, Dung Daniel Ngo, Zhiwei Steven Wu,
- Abstract要約: 深度2の決定木をアンサンブルする離散化のない多重校正法を提案する。
本アルゴリズムは,データ分布が損失飽和と呼ばれる技術的条件を満たすことを前提として,マルチキャリブレーションを確実に達成する。
- 参考スコア(独自算出の注目度): 22.276913140687725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, multicalibration has emerged as a desirable learning objective for ensuring that a predictor is calibrated across a rich collection of overlapping subpopulations. Existing approaches typically achieve multicalibration by discretizing the predictor's output space and iteratively adjusting its output values. However, this discretization approach departs from the standard empirical risk minimization (ERM) pipeline, introduces rounding error and additional sensitive hyperparameter, and may distort the predictor's outputs in ways that hinder downstream decision-making. In this work, we propose a discretization-free multicalibration method that directly optimizes an empirical risk objective over an ensemble of depth-two decision trees. Our ERM approach can be implemented using off-the-shelf tree ensemble learning methods such as LightGBM. Our algorithm provably achieves multicalibration, provided that the data distribution satisfies a technical condition we term as loss saturation. Across multiple datasets, our empirical evaluation shows that this condition is always met in practice. Our discretization-free algorithm consistently matches or outperforms existing multicalibration approaches--even when evaluated using a discretization-based multicalibration metric that shares its discretization granularity with the baselines.
- Abstract(参考訳): 近年,マルチキャリブレーションは,重複するサブポピュレーションの豊富なコレクションに予測器が校正されることを保証するために望ましい学習目標として浮上している。
既存のアプローチは通常、予測子の出力空間を離散化し、出力値を反復的に調整することで多重校正を実現する。
しかし、この離散化アプローチは、標準的な経験的リスク最小化(ERM)パイプラインから離れ、丸め誤差と追加の感度ハイパーパラメータを導入し、下流の意思決定を妨げる方法で予測者の出力を歪ませる可能性がある。
本研究では,深度2の決定木の集合に対して,経験的リスク目標を直接最適化する,離散化のない多重校正手法を提案する。
当社のERMアプローチは,LightGBMのような既製のツリーアンサンブル学習手法を用いて実装することができる。
本アルゴリズムは,データ分布が損失飽和と呼ばれる技術的条件を満たすことを前提として,マルチキャリブレーションを確実に達成する。
複数のデータセットにまたがって、我々の経験的評価は、この条件は常に実際に満たされていることを示している。
我々の離散化自由アルゴリズムは、その離散化の粒度を基準線と共有する離散化に基づく多重校正計量を用いて評価しても、既存の多重校正アプローチに一貫して適合または優れる。
関連論文リスト
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
提案手法は,予測された直接効果推定値,隠された仲介者,共同設立者,モデレーターまで拡張する。
提案された二重頑健な推定器は、最小の仮定と潜在的な不特定性の下で一貫性があり、効率的である。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
バッチ強化学習(RL)は、事前収集されたデータを利用して最適なポリシーを見つけることを目的としている。
本稿では,状態空間と行動空間の両方に特異性を持たせる新しいバッチRLアルゴリズムを提案する。
悲観主義といくつかの技術的条件を利用して、提案したアルゴリズムに対する最初の有限サンプル後悔保証を導出する。
論文 参考訳(メタデータ) (2023-01-30T18:29:35Z) - End-to-End Multi-Object Detection with a Regularized Mixture Model [26.19278003378703]
近年のエンド・ツー・エンド多目的検出器は手作りのプロセスを取り除き、推論パイプラインを単純化している。
本稿では,NLL(負対数類似度)と正規化項(正則化項)の2項のみからなるエンドツーエンドの多対象検出器を訓練するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-18T04:20:23Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Differentially Private ADMM for Convex Distributed Learning: Improved
Accuracy via Multi-Step Approximation [10.742065340992525]
Alternating Direction Method of Multipliers (ADMM) は分散学習において一般的な計算方法である。
トレーニングデータが機密性のある場合には、交換されたイテレートが深刻なプライバシー上の懸念を引き起こす。
本稿では,様々な凸学習問題に対する精度の向上を図った分散ADMMを提案する。
論文 参考訳(メタデータ) (2020-05-16T07:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。