Discretization-free Multicalibration through Loss Minimization over Tree Ensembles
- URL: http://arxiv.org/abs/2505.17435v1
- Date: Fri, 23 May 2025 03:29:58 GMT
- Title: Discretization-free Multicalibration through Loss Minimization over Tree Ensembles
- Authors: Hongyi Henry Jin, Zijun Ding, Dung Daniel Ngo, Zhiwei Steven Wu,
- Abstract summary: We propose a discretization-free multicalibration method over an ensemble of depth-two decision trees.<n>Our algorithm provably achieves multicalibration, provided that the data distribution satisfies a technical condition we term as loss saturation.
- Score: 22.276913140687725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, multicalibration has emerged as a desirable learning objective for ensuring that a predictor is calibrated across a rich collection of overlapping subpopulations. Existing approaches typically achieve multicalibration by discretizing the predictor's output space and iteratively adjusting its output values. However, this discretization approach departs from the standard empirical risk minimization (ERM) pipeline, introduces rounding error and additional sensitive hyperparameter, and may distort the predictor's outputs in ways that hinder downstream decision-making. In this work, we propose a discretization-free multicalibration method that directly optimizes an empirical risk objective over an ensemble of depth-two decision trees. Our ERM approach can be implemented using off-the-shelf tree ensemble learning methods such as LightGBM. Our algorithm provably achieves multicalibration, provided that the data distribution satisfies a technical condition we term as loss saturation. Across multiple datasets, our empirical evaluation shows that this condition is always met in practice. Our discretization-free algorithm consistently matches or outperforms existing multicalibration approaches--even when evaluated using a discretization-based multicalibration metric that shares its discretization granularity with the baselines.
Related papers
- Multivariate Latent Recalibration for Conditional Normalizing Flows [2.3020018305241337]
latent recalibration learns a transformation of the latent space with finite-sample bounds on latent calibration.<n>LR consistently improves latent calibration error and the negative log-likelihood of the recalibrated models.
arXiv Detail & Related papers (2025-05-22T13:08:20Z) - Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.<n>Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - A Finite-Sample Analysis of an Actor-Critic Algorithm for Mean-Variance Optimization in a Discounted MDP [1.0923877073891446]
We analyze a Temporal Difference (TD) learning algorithm with linear function approximation (LFA) for policy evaluation.<n>We derive finite-sample bounds that hold (i) in the mean-squared sense and (ii) with high probability under tail iterate averaging.<n>These results establish finite-sample theoretical guarantees for risk-sensitive actor-critic methods in reinforcement learning.
arXiv Detail & Related papers (2024-06-12T05:49:53Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.<n>We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.<n>We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy.
We propose a new batch RL algorithm that allows for singularity for both state and action spaces.
By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T18:29:35Z) - End-to-End Multi-Object Detection with a Regularized Mixture Model [26.19278003378703]
Recent end-to-end multi-object detectors simplify the inference pipeline by removing hand-crafted processes.
We propose a novel framework to train an end-to-end multi-object detector consisting of only two terms: negative log-likelihood (NLL) and a regularization term.
arXiv Detail & Related papers (2022-05-18T04:20:23Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Differentially Private ADMM for Convex Distributed Learning: Improved
Accuracy via Multi-Step Approximation [10.742065340992525]
Alternating Direction Method of Multipliers (ADMM) is a popular computation for distributed learning.
When the training data is sensitive, the exchanged iterates will cause serious privacy concern.
We propose a new differentially private distributed ADMM with improved accuracy for a wide range of convex learning problems.
arXiv Detail & Related papers (2020-05-16T07:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.