論文の概要: Efficient compression of neural networks and datasets
- arxiv url: http://arxiv.org/abs/2505.17469v1
- Date: Fri, 23 May 2025 04:50:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.819395
- Title: Efficient compression of neural networks and datasets
- Title(参考訳): ニューラルネットワークとデータセットの効率的な圧縮
- Authors: Lukas Silvester Barth, Paulo von Petersenn,
- Abstract要約: ニューラルネットワークのパラメータ数を著しく削減する手法を比較し,改善し,貢献する。
記述長を最小化するために本手法を適用すると、非常に効率的なデータ圧縮アルゴリズムが得られる。
正規化モデルがより標本効率のよい収束を示すことができるという予測を実証的に検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We compare, improve, and contribute methods that substantially decrease the number of parameters of neural networks while maintaining high test accuracy. When applying our methods to minimize description length, we obtain very effective data compression algorithms. In particular, we develop a probabilistic reformulation of $\ell_0$ regularized optimization for nonlinear models that does not require Monte-Carlo sampling and thus improves upon previous methods. We also improve upon methods involving smooth approximations to the $\ell_0$ norm, and investigate layerwise methods. We compare the methods on different architectures and datasets, including convolutional networks trained on image datasets and transformers trained on parts of Wikipedia. We also created a synthetic teacher-student setup to investigate compression in a controlled continuous setting. Finally, we conceptually relate compression algorithms to Solomonoff's theory of inductive inference and empirically verify the prediction that regularized models can exhibit more sample-efficient convergence.
- Abstract(参考訳): 高いテスト精度を維持しながら、ニューラルネットワークのパラメータ数を著しく削減する手法を比較し、改善し、貢献する。
記述長を最小化するために本手法を適用すると、非常に効率的なデータ圧縮アルゴリズムが得られる。
特に,モンテカルロサンプリングを必要としない非線形モデルに対する$\ell_0$正規化最適化の確率的再構成を開発し,従って従来の手法を改良する。
また,$\ell_0$ノルムに対するスムーズな近似を含む手法を改善し,階層的手法について検討する。
例えば、画像データセットでトレーニングされた畳み込みネットワークや、Wikipediaでトレーニングされたトランスフォーマーなどです。
また、制御された連続的な環境下での圧縮を調査するための合成教師学生設定も作成した。
最後に、圧縮アルゴリズムをソロモノフの帰納的推論理論に概念的に関連付け、正規化モデルがより標本効率のよい収束を示すことができるという予測を実証的に検証する。
関連論文リスト
- Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
本稿では,限られたデータを扱う音声変換手法を提案する。
変分深層学習(SVDKL)に基づく。
非滑らかでより複雑な関数を推定することができる。
論文 参考訳(メタデータ) (2023-09-08T16:32:47Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
本稿では,ノード,エッジ,あるいはその両方に情報をエンコードするグラフベースの問題を扱う新しいニューラル改善(NI)モデルを提案する。
提案モデルは,各地区の操作の選択を誘導する丘登頂に基づくアルゴリズムの基本的な構成要素として機能する。
論文 参考訳(メタデータ) (2022-06-01T10:35:29Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
サンプルをしきい値にすることでスパース分布を学習できる変分スパース符号化の新しい手法を提案する。
まず,線形発生器を訓練し,その性能,統計的効率,勾配推定に優れることを示す。
論文 参考訳(メタデータ) (2022-05-07T14:49:50Z) - Low-rank Tensor Decomposition for Compression of Convolutional Neural
Networks Using Funnel Regularization [1.8579693774597708]
低ランクテンソル分解を用いた事前学習ネットワークを圧縮するモデル削減手法を提案する。
圧縮中の重要でない要因を抑えるために, ファンネル関数と呼ばれる新しい正規化法を提案する。
ImageNet2012のResNet18では、GMACの精度は0.7%に過ぎず、Top-1の精度はわずかに低下する。
論文 参考訳(メタデータ) (2021-12-07T13:41:51Z) - Dictionary Learning with Low-rank Coding Coefficients for Tensor
Completion [33.068635237011236]
我々のモデルは、与えられた観測結果からデータ適応辞書を学習することである。
完了過程において、符号化係数を含む各テンソルスライスの低ランク化を最小化する。
論文 参考訳(メタデータ) (2020-09-26T02:43:43Z) - A Partial Regularization Method for Network Compression [0.0]
本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
論文 参考訳(メタデータ) (2020-09-03T00:38:27Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。