MARCO: Meta-Reflection with Cross-Referencing for Code Reasoning
- URL: http://arxiv.org/abs/2505.17481v1
- Date: Fri, 23 May 2025 05:21:11 GMT
- Title: MARCO: Meta-Reflection with Cross-Referencing for Code Reasoning
- Authors: Yusheng Zhao, Xiao Luo, Weizhi Zhang, Wei Ju, Zhiping Xiao, Philip S. Yu, Ming Zhang,
- Abstract summary: We explore how can an LLM agent become progressively smarter in code reasoning with each solution it proposes.<n>We adopt a cognitive-evolving perspective and propose a novel framework named Meta-Reflection with Cross-Referencing (MARCO)<n>We conduct experiments across various datasets in code reasoning, and the results demonstrate the effectiveness of MARCO.
- Score: 37.0077348617437
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ability to reason is one of the most fundamental capabilities of large language models (LLMs), enabling a wide range of downstream tasks through sophisticated problem-solving. A critical aspect of this is code reasoning, which involves logical reasoning with formal languages (i.e., programming code). In this paper, we enhance this capability of LLMs by exploring the following question: how can an LLM agent become progressively smarter in code reasoning with each solution it proposes, thereby achieving substantial cumulative improvement? Most existing research takes a static perspective, focusing on isolated problem-solving using frozen LLMs. In contrast, we adopt a cognitive-evolving perspective and propose a novel framework named Meta-Reflection with Cross-Referencing (MARCO) that enables the LLM to evolve dynamically during inference through self-improvement. From the perspective of human cognitive development, we leverage both knowledge accumulation and lesson sharing. In particular, to accumulate knowledge during problem-solving, we propose meta-reflection that reflects on the reasoning paths of the current problem to obtain knowledge and experience for future consideration. Moreover, to effectively utilize the lessons from other agents, we propose cross-referencing that incorporates the solution and feedback from other agents into the current problem-solving process. We conduct experiments across various datasets in code reasoning, and the results demonstrate the effectiveness of MARCO.
Related papers
- ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - CausalEval: Towards Better Causal Reasoning in Language Models [16.55801836321059]
Causal reasoning (CR) is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world.<n>While language models (LMs) can generate rationales for their outputs, their ability to reliably perform causal reasoning remains uncertain.<n>We introduce CausalEval, a review of research aimed at enhancing LMs for causal reasoning.
arXiv Detail & Related papers (2024-10-22T04:18:19Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs.
Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning.
We find that self-improvement, self-reflection, and some meta abilities of the reasoning processes are possible through the judicious use of prompts.
arXiv Detail & Related papers (2024-07-16T08:49:35Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.