Anatomy-Guided Multitask Learning for MRI-Based Classification of Placenta Accreta Spectrum and its Subtypes
- URL: http://arxiv.org/abs/2505.17484v1
- Date: Fri, 23 May 2025 05:22:30 GMT
- Title: Anatomy-Guided Multitask Learning for MRI-Based Classification of Placenta Accreta Spectrum and its Subtypes
- Authors: Hai Jiang, Qiongting Liu, Yuanpin Zhou, Jiawei Pan, Ting Song, Yao Lu,
- Abstract summary: Placenta Accreta Spectrum Disorders (PAS) pose significant risks during pregnancy.<n>We propose a novel convolutional neural network (CNN) architecture designed for efficient one-stage multiclass diagnosis of PAS and its subtypes.
- Score: 8.27670531391613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Placenta Accreta Spectrum Disorders (PAS) pose significant risks during pregnancy, frequently leading to postpartum hemorrhage during cesarean deliveries and other severe clinical complications, with bleeding severity correlating to the degree of placental invasion. Consequently, accurate prenatal diagnosis of PAS and its subtypes-placenta accreta (PA), placenta increta (PI), and placenta percreta (PP)-is crucial. However, existing guidelines and methodologies predominantly focus on the presence of PAS, with limited research addressing subtype recognition. Additionally, previous multi-class diagnostic efforts have primarily relied on inefficient two-stage cascaded binary classification tasks. In this study, we propose a novel convolutional neural network (CNN) architecture designed for efficient one-stage multiclass diagnosis of PAS and its subtypes, based on 4,140 magnetic resonance imaging (MRI) slices. Our model features two branches: the main classification branch utilizes a residual block architecture comprising multiple residual blocks, while the second branch integrates anatomical features of the uteroplacental area and the adjacent uterine serous layer to enhance the model's attention during classification. Furthermore, we implement a multitask learning strategy to leverage both branches effectively. Experiments conducted on a real clinical dataset demonstrate that our model achieves state-of-the-art performance.
Related papers
- HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
A novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture.<n>The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning.
arXiv Detail & Related papers (2025-04-14T04:52:24Z) - Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
We propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification.<n>Our framework introduces two key components into the common MIL model architecture.<n>We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets.
arXiv Detail & Related papers (2025-03-08T04:51:58Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder involving motor neuron degeneration.
Deep learning has turned into a prominent class of machine learning programs in computer vision.
This study introduces a framework named SF2Former that leverages vision transformer architecture's power to distinguish the ALS subjects from the control group.
arXiv Detail & Related papers (2023-02-21T18:16:20Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
In Twin-to-Twin Transfusion Syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can produce uneven blood flow between the two fetuses.
We propose a learning-based framework for in-vivo fetoscopy frame registration for field-of-view expansion.
arXiv Detail & Related papers (2022-07-26T21:21:12Z) - Towards A Device-Independent Deep Learning Approach for the Automated
Segmentation of Sonographic Fetal Brain Structures: A Multi-Center and
Multi-Device Validation [0.0]
We propose a DL based segmentation framework for the automated segmentation of 10 key fetal brain structures from 2 axial planes from fetal brain USG images (2D)
The proposed DL system offered a promising and generalizable performance (multi-centers, multi-device) and also presents evidence in support of device-induced variation in image quality.
arXiv Detail & Related papers (2022-02-28T05:42:03Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Statistical Dependency Guided Contrastive Learning for Multiple Labeling
in Prenatal Ultrasound [56.631021151764955]
Standard plane recognition plays an important role in prenatal ultrasound (US) screening.
We build a novel multi-label learning scheme to identify multiple standard planes and corresponding anatomical structures simultaneously.
arXiv Detail & Related papers (2021-08-11T06:39:26Z) - Self-transfer learning via patches: A prostate cancer triage approach
based on bi-parametric MRI [1.3934382972253603]
Prostate cancer (PCa) is the second most common cancer diagnosed among men worldwide.
The current PCa diagnostic pathway comes at the cost of substantial overdiagnosis, leading to unnecessary treatment and further testing.
We present a patch-based pre-training strategy to distinguish between clinically significant (cS) and non-clinically significant (ncS) lesions.
arXiv Detail & Related papers (2021-07-22T17:02:38Z) - A Novel Self-Learning Framework for Bladder Cancer Grading Using
Histopathological Images [1.244681179922733]
We present a self-learning framework to grade bladder cancer from histological images stained viachemical techniques.
We propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows classifying histological patches into different levels of the disease.
arXiv Detail & Related papers (2021-06-25T11:04:04Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.