Probe by Gaming: A Game-based Benchmark for Assessing Conceptual Knowledge in LLMs
- URL: http://arxiv.org/abs/2505.17512v1
- Date: Fri, 23 May 2025 06:06:28 GMT
- Title: Probe by Gaming: A Game-based Benchmark for Assessing Conceptual Knowledge in LLMs
- Authors: Shuhang Xu, Weijian Deng, Yixuan Zhou, Fangwei Zhong,
- Abstract summary: CK-Arena is a multi-agent interaction game built upon the Undercover game.<n>It is designed to evaluate the capacity of Large Language Models to reason with concepts in interactive settings.<n> CK-Arena provides a scalable and realistic benchmark for assessing conceptual reasoning in dynamic environments.
- Score: 17.753896112412942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concepts represent generalized abstractions that enable humans to categorize and reason efficiently, yet it is unclear to what extent Large Language Models (LLMs) comprehend these semantic relationships. Existing benchmarks typically focus on factual recall and isolated tasks, failing to evaluate the ability of LLMs to understand conceptual boundaries. To address this gap, we introduce CK-Arena, a multi-agent interaction game built upon the Undercover game, designed to evaluate the capacity of LLMs to reason with concepts in interactive settings. CK-Arena challenges models to describe, differentiate, and infer conceptual boundaries based on partial information, encouraging models to explore commonalities and distinctions between closely related concepts. By simulating real-world interaction, CK-Arena provides a scalable and realistic benchmark for assessing conceptual reasoning in dynamic environments. Experimental results show that LLMs' understanding of conceptual knowledge varies significantly across different categories and is not strictly aligned with parameter size or general model capabilities. The data and code are available at the project homepage: https://ck-arena.site.
Related papers
- EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? [52.99661576320663]
multimodal large language models (MLLMs) have driven breakthroughs in egocentric vision applications.<n>EOC-Bench is an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios.<n>We conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs based on EOC-Bench.
arXiv Detail & Related papers (2025-06-05T17:44:12Z) - KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation [78.96590724864606]
We introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium.<n>KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios.
arXiv Detail & Related papers (2025-05-20T16:06:32Z) - V-MAGE: A Game Evaluation Framework for Assessing Vision-Centric Capabilities in Multimodal Large Language Models [84.27290155010533]
We introduce Vision-centric Multiple Abilities Game Evaluation (V-MAGE), a novel game-based evaluation framework.<n>V-MAGE features five distinct video games comprising over 30 carefully constructed evaluation scenarios.<n>We show V-MAGE provides actionable insights for improving the visual and reasoning capabilities of MLLMs in dynamic, interactive settings.
arXiv Detail & Related papers (2025-04-08T15:43:01Z) - Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization [2.163881720692685]
We introduce a new methodology for incorporating interpretability and intervenability into an existing model by integrating Concept Layers into its architecture.<n>Our approach projects the model's internal vector representations into a conceptual, explainable vector space before reconstructing and feeding them back into the model.<n>We evaluate CLs across multiple tasks, demonstrating that they maintain the original model's performance and agreement while enabling meaningful interventions.
arXiv Detail & Related papers (2025-02-19T11:10:19Z) - ConSim: Measuring Concept-Based Explanations' Effectiveness with Automated Simulatability [7.379131259852646]
Concept-based explanations work by mapping complex model computations to human-understandable concepts.<n>Existing evaluation metrics often focus solely on the quality of the induced space of possible concepts.<n>We introduce an evaluation framework for measuring concept explanations via automated simulatability.
arXiv Detail & Related papers (2025-01-10T10:53:48Z) - Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concept at Different Layers? [57.04803703952721]
Large language models (LLMs) have shown remarkable performances across a wide range of tasks.<n>However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood.<n>We introduce the idea of "Concept Depth" to suggest that more complex concepts are typically acquired in deeper layers.
arXiv Detail & Related papers (2024-04-10T14:56:40Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Concept-Centric Transformers: Enhancing Model Interpretability through
Object-Centric Concept Learning within a Shared Global Workspace [1.6574413179773757]
Concept-Centric Transformers is a simple yet effective configuration of the shared global workspace for interpretability.
We show that our model achieves better classification accuracy than all baselines across all problems.
arXiv Detail & Related papers (2023-05-25T06:37:39Z) - COPEN: Probing Conceptual Knowledge in Pre-trained Language Models [60.10147136876669]
Conceptual knowledge is fundamental to human cognition and knowledge bases.
Existing knowledge probing works only focus on factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge.
We design three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts.
For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark.
arXiv Detail & Related papers (2022-11-08T08:18:06Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
Concept discovery is important for bridging the gap between non-deep learning experts and model end-users.
Current approaches include hand-crafting concept datasets and then converting them to latent space directions.
In this study, we offer another two approaches to guide user discovery of meaningful concepts, one based on multiple hypothesis testing, and another on interactive visualization.
arXiv Detail & Related papers (2022-02-09T22:29:48Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.