Runaway is Ashamed, But Helpful: On the Early-Exit Behavior of Large Language Model-based Agents in Embodied Environments
- URL: http://arxiv.org/abs/2505.17616v1
- Date: Fri, 23 May 2025 08:23:36 GMT
- Title: Runaway is Ashamed, But Helpful: On the Early-Exit Behavior of Large Language Model-based Agents in Embodied Environments
- Authors: Qingyu Lu, Liang Ding, Siyi Cao, Xuebo Liu, Kanjian Zhang, Jinxia Zhang, Dacheng Tao,
- Abstract summary: Large language models (LLMs) have demonstrated strong planning and decision-making capabilities in complex embodied environments.<n>We take a first step toward exploring the early-exit behavior for LLM-based agents.
- Score: 55.044159987218436
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Agents powered by large language models (LLMs) have demonstrated strong planning and decision-making capabilities in complex embodied environments. However, such agents often suffer from inefficiencies in multi-turn interactions, frequently trapped in repetitive loops or issuing ineffective commands, leading to redundant computational overhead. Instead of relying solely on learning from trajectories, we take a first step toward exploring the early-exit behavior for LLM-based agents. We propose two complementary approaches: 1. an $\textbf{intrinsic}$ method that injects exit instructions during generation, and 2. an $\textbf{extrinsic}$ method that verifies task completion to determine when to halt an agent's trial. To evaluate early-exit mechanisms, we introduce two metrics: one measures the reduction of $\textbf{redundant steps}$ as a positive effect, and the other evaluates $\textbf{progress degradation}$ as a negative effect. Experiments with 4 different LLMs across 5 embodied environments show significant efficiency improvements, with only minor drops in agent performance. We also validate a practical strategy where a stronger agent assists after an early-exit agent, achieving better performance with the same total steps. We will release our code to support further research.
Related papers
- Distilling LLM Agent into Small Models with Retrieval and Code Tools [57.61747522001781]
Agent Distillation is a framework for transferring reasoning capability and task-solving behavior from large language models into small language models.<n>Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models.
arXiv Detail & Related papers (2025-05-23T08:20:15Z) - Cracking the Code of Action: a Generative Approach to Affordances for Reinforcement Learning [33.790048240113165]
In this work, we consider the low-data regime, with limited or no access to expert behavior.<n>We propose $textbfCode as Generative Affordances$ $(textbf$textttCoGA$)$.<n>By greatly reducing the number of actions that an agent must consider, we demonstrate on a wide range of tasks in the MiniWob++ benchmark.
arXiv Detail & Related papers (2025-04-24T06:20:08Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.<n>On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents.<n>However, the impact of clumsy or even malicious agents, on the overall performance of the system remains underexplored.<n>This paper investigates what is the resilience of various system structures under faulty agents.
arXiv Detail & Related papers (2024-08-02T03:25:20Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgent is an end-to-end framework for unified debug through multi-agent synergy.
It significantly outperforms state-of-the-art repair methods, fixing 1.25$times$ to 2.56$times$ bugs on the repo-level benchmark, Defects4J.
arXiv Detail & Related papers (2024-04-26T04:55:35Z) - ReAct Meets ActRe: When Language Agents Enjoy Training Data Autonomy [47.42940885853956]
A$3$T is a framework that enables the Autonomous.
of Agent Trajectories in the style of ReAct.
In AlfWorld, the agent trained with A$3$T obtains a 1-shot success rate of 96%, and 100% success with 4 iterative rounds.
arXiv Detail & Related papers (2024-03-21T17:43:44Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
Open-sourced Large Language Models (LLMs) have achieved great success in various NLP tasks, however, they are still far inferior to API-based models when acting as agents.
This paper delivers three key observations: (1) the current agent training corpus is entangled with both formats following and agent reasoning, which significantly shifts from the distribution of its pre-training data; (2) LLMs exhibit different learning speeds on the capabilities required by agent tasks; and (3) current approaches have side-effects when improving agent abilities by introducing hallucinations.
We propose Agent-FLAN to effectively Fine-tune LANguage models for Agents.
arXiv Detail & Related papers (2024-03-19T16:26:10Z) - QueryAgent: A Reliable and Efficient Reasoning Framework with Environmental Feedback-based Self-Correction [18.383499080327542]
We introduce an environmental feedback-based self-correction method called ERASER.
Experimental results demonstrate that QueryAgent notably outperforms all previous few-shot methods.
Our approach exhibits superiority in terms of efficiency, including runtime, query overhead, and API invocation costs.
arXiv Detail & Related papers (2024-03-18T15:39:14Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.