論文の概要: CAS-IQA: Teaching Vision-Language Models for Synthetic Angiography Quality Assessment
- arxiv url: http://arxiv.org/abs/2505.17619v1
- Date: Fri, 23 May 2025 08:27:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.928368
- Title: CAS-IQA: Teaching Vision-Language Models for Synthetic Angiography Quality Assessment
- Title(参考訳): CAS-IQA:合成血管造影の品質評価のための視覚言語モデル
- Authors: Bo Wang, De-Xing Huang, Xiao-Hu Zhou, Mei-Jiang Gui, Nu-Fang Xiao, Jian-Long Hao, Ming-Yuan Liu, Zeng-Guang Hou,
- Abstract要約: 低品質の合成血管造影は、手続き的リスクを著しく増大させる。
本稿では,視覚言語モデル(VLM)に基づく細粒度品質スコア予測フレームワークであるCAS-IQAを提案する。
CAS-3Kデータセットの実験では、CAS-IQAは最先端のIQA法よりもかなり優れていた。
- 参考スコア(独自算出の注目度): 11.527245046470123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic X-ray angiographies generated by modern generative models hold great potential to reduce the use of contrast agents in vascular interventional procedures. However, low-quality synthetic angiographies can significantly increase procedural risk, underscoring the need for reliable image quality assessment (IQA) methods. Existing IQA models, however, fail to leverage auxiliary images as references during evaluation and lack fine-grained, task-specific metrics necessary for clinical relevance. To address these limitations, this paper proposes CAS-IQA, a vision-language model (VLM)-based framework that predicts fine-grained quality scores by effectively incorporating auxiliary information from related images. In the absence of angiography datasets, CAS-3K is constructed, comprising 3,565 synthetic angiographies along with score annotations. To ensure clinically meaningful assessment, three task-specific evaluation metrics are defined. Furthermore, a Multi-path featUre fuSion and rouTing (MUST) module is designed to enhance image representations by adaptively fusing and routing visual tokens to metric-specific branches. Extensive experiments on the CAS-3K dataset demonstrate that CAS-IQA significantly outperforms state-of-the-art IQA methods by a considerable margin.
- Abstract(参考訳): 合成X線アンギオグラフィーは, 血管内挿術における造影剤の使用を減少させる大きな可能性を秘めている。
しかし、低品質な合成血管造影は手続き的リスクを著しく増加させ、信頼性の高い画像品質評価法(IQA)の必要性を浮き彫りにしている。
しかし、既存のIQAモデルは、評価中の参照として補助画像を活用することができず、臨床関連性に必要なきめ細かいタスク固有の指標が欠如している。
本稿では,視覚言語モデル(VLM)に基づくフレームワークであるCAS-IQAを提案する。
血管造影データセットがない場合、CAS-3Kは3,565の合成血管造影とスコアアノテーションから構成される。
臨床的に有意な評価を確保するために、3つのタスク固有の評価指標が定義される。
さらに、Multi-path achievementUre fuSion and rouTing (MUST)モジュールは、視覚トークンを適応的に融合し、メトリック固有のブランチにルーティングすることで、画像表現を強化するように設計されている。
CAS-3Kデータセットの大規模な実験により、CAS-IQAは最先端のIQA法よりもかなり優れていることが示された。
関連論文リスト
- Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement [12.628718661568048]
我々は,人間の品質評価の過程を模倣する,一般化された視覚的注意度推定戦略を検討することを目的とする。
特に、劣化画像と参照画像の統計的依存性を測定することによって、人間の注意生成をモデル化する。
既存のIQAモデルのアテンションモジュールを組み込んだ場合、既存のIQAモデルの性能を一貫して改善できることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-08-19T11:55:32Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents [92.45867913876691]
非参照画像品質評価(NR-IQA)モデルは、知覚された画像品質を効果的に定量化することができる。
NR-IQAモデルは、画像強調のための最大後部推定(MAP)フレームワークにプラグイン可能であることを示す。
論文 参考訳(メタデータ) (2024-03-11T03:35:41Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
画像品質評価(IQA)は放射線線量最適化と新しい医用イメージング技術開発において重要な役割を担っている。
最近の深層学習に基づくアプローチは、強力なモデリング能力と医療IQAの可能性を示している。
本稿では,出力分布を制約して品質スコアを予測するため,マルチスケール分布回帰手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T09:33:33Z) - UNO-QA: An Unsupervised Anomaly-Aware Framework with Test-Time
Clustering for OCTA Image Quality Assessment [4.901218498977952]
光コヒーレンス・トモグラフィ・アンギオグラフィー(OCTA)画像品質評価のためのテスト時間クラスタリングを用いた教師なし異常認識フレームワークを提案する。
OCTA画像の品質を定量化するために,特徴埋め込みに基づく低品質表現モジュールを提案する。
我々は、訓練されたOCTA品質表現ネットワークによって抽出されたマルチスケール画像の特徴の次元削減とクラスタリングを行う。
論文 参考訳(メタデータ) (2022-12-20T18:48:04Z) - A Shift-insensitive Full Reference Image Quality Assessment Model Based
on Quadratic Sum of Gradient Magnitude and LOG signals [7.0736273644584715]
本研究では,GMとLOG信号の2次和を用いたFR-IQAモデルを提案する。
実験の結果,提案モデルは3つの大規模主観的IQAデータベース上で堅牢に動作することがわかった。
論文 参考訳(メタデータ) (2020-12-21T17:41:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。