GeoGramBench: Benchmarking the Geometric Program Reasoning in Modern LLMs
- URL: http://arxiv.org/abs/2505.17653v1
- Date: Fri, 23 May 2025 09:17:07 GMT
- Title: GeoGramBench: Benchmarking the Geometric Program Reasoning in Modern LLMs
- Authors: Shixian Luo, Zezhou Zhu, Yu Yuan, Yuncheng Yang, Lianlei Shan, Yong Wu,
- Abstract summary: We present a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity.<n>Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies.<n>These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning.
- Score: 7.605833826892782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometric spatial reasoning forms the foundation of many applications in artificial intelligence, yet the ability of large language models (LLMs) to operate over geometric spatial information expressed in procedural code remains underexplored. In this paper, we address this gap by formalizing the Program-to-Geometry task, which challenges models to translate programmatic drawing code into accurate and abstract geometric reasoning. To evaluate this capability, we present GeoGramBench, a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity. Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies: even the most advanced models achieve less than 50% accuracy at the highest abstraction level. These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning. Project page: https://github.com/LiAuto-DSR/GeoGramBench.
Related papers
- Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration [57.95306827012784]
We propose GeoGen, a pipeline that can automatically generate step-wise reasoning paths for geometry diagrams.<n>By leveraging the precise symbolic reasoning, textbfGeoGen produces large-scale, high-quality question-answer pairs.<n>We train textbfGeoLogic, a Large Language Model (LLM), using synthetic data generated by GeoGen.
arXiv Detail & Related papers (2025-04-17T09:13:46Z) - GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning [20.399408869403437]
Geometry problem-solving (GPS) is a challenging task requiring both visual comprehension and symbolic reasoning.<n>Existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in large language models.<n>We introduce GeoSense, the first comprehensive bilingual benchmark designed to evaluate the geometric reasoning abilities of MLLMs.
arXiv Detail & Related papers (2025-04-17T02:46:27Z) - MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams [65.02628814094639]
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements.<n>Current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether Multimodal Large Language Models genuinely understand mathematical diagrams beyond superficial pattern recognition.<n>We introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs.<n>We construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text annotated with geometric primitives and precise spatial relationships.
arXiv Detail & Related papers (2025-03-26T17:30:41Z) - GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training [45.42400674977197]
GeoX is a multi-modal large model focusing on geometric understanding and reasoning tasks.<n>We introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora.<n>We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals.
arXiv Detail & Related papers (2024-12-16T15:20:03Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - GeomVerse: A Systematic Evaluation of Large Models for Geometric
Reasoning [17.61621287003562]
We evaluate vision language models (VLMs) along various axes through the lens of geometry problems.
We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes.
The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry.
arXiv Detail & Related papers (2023-12-19T15:25:39Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.