The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations
- URL: http://arxiv.org/abs/2505.17708v2
- Date: Tue, 27 May 2025 07:51:53 GMT
- Title: The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations
- Authors: Dingling Yao, Shimeng Huang, Riccardo Cadei, Kun Zhang, Francesco Locatello,
- Abstract summary: Causal reasoning and discovery often face challenges due to the complexity, noisiness, and high-dimensionality of real-world data.<n>What makes learned representations useful for causal downstream tasks and how to evaluate them are still not well understood.
- Score: 23.129188507631284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal reasoning and discovery, two fundamental tasks of causal analysis, often face challenges in applications due to the complexity, noisiness, and high-dimensionality of real-world data. Despite recent progress in identifying latent causal structures using causal representation learning (CRL), what makes learned representations useful for causal downstream tasks and how to evaluate them are still not well understood. In this paper, we reinterpret CRL using a measurement model framework, where the learned representations are viewed as proxy measurements of the latent causal variables. Our approach clarifies the conditions under which learned representations support downstream causal reasoning and provides a principled basis for quantitatively assessing the quality of representations using a new Test-based Measurement EXclusivity (T-MEX) score. We validate T-MEX across diverse causal inference scenarios, including numerical simulations and real-world ecological video analysis, demonstrating that the proposed framework and corresponding score effectively assess the identification of learned representations and their usefulness for causal downstream tasks.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
arXiv Detail & Related papers (2024-02-20T12:58:14Z) - SSL Framework for Causal Inconsistency between Structures and Representations [31.895570222735955]
Cross-pollination between causal discovery and deep learning has led to increasingly extensive interactions.<n>Indefinite Data has conflicts between causal relationships expressed by the causal structure and causal representation generated by deep learning models.<n>To alleviate causal inconsistency, we proposed a self-supervised learning framework based on intervention.
arXiv Detail & Related papers (2023-10-28T08:29:49Z) - Causal Representation Learning Made Identifiable by Grouping of Observational Variables [8.157856010838382]
Causal Representation Learning aims to learn a causal model for hidden features in a data-driven manner.
Here, we show identifiability based on novel, weak constraints.
We also propose a novel self-supervised estimation framework consistent with the model.
arXiv Detail & Related papers (2023-10-24T10:38:02Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.<n>One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Specify Robust Causal Representation from Mixed Observations [35.387451486213344]
Learning representations purely from observations concerns the problem of learning a low-dimensional, compact representation which is beneficial to prediction models.
We develop a learning method to learn such representation from observational data by regularizing the learning procedure with mutual information measures.
We theoretically and empirically show that the models trained with the learned causal representations are more robust under adversarial attacks and distribution shifts.
arXiv Detail & Related papers (2023-10-21T02:18:35Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - On Causally Disentangled Representations [18.122893077772993]
We present an analysis of disentangled representations through the notion of disentangled causal process.
We show that our metrics capture the desiderata of disentangled causal process.
We perform an empirical study on state of the art disentangled representation learners using our metrics and dataset to evaluate them from causal perspective.
arXiv Detail & Related papers (2021-12-10T18:56:27Z) - Which Mutual-Information Representation Learning Objectives are
Sufficient for Control? [80.2534918595143]
Mutual information provides an appealing formalism for learning representations of data.
This paper formalizes the sufficiency of a state representation for learning and representing the optimal policy.
Surprisingly, we find that two of these objectives can yield insufficient representations given mild and common assumptions on the structure of the MDP.
arXiv Detail & Related papers (2021-06-14T10:12:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.