Autonomous Vehicles Using Multi-Agent Reinforcement Learning for Routing Decisions Can Harm Urban Traffic
- URL: http://arxiv.org/abs/2502.13188v1
- Date: Tue, 18 Feb 2025 13:37:02 GMT
- Title: Autonomous Vehicles Using Multi-Agent Reinforcement Learning for Routing Decisions Can Harm Urban Traffic
- Authors: Anastasia Psarou, Ahmet Onur Akman, Łukasz Gorczyca, Michał Hoffmann, Zoltán György Varga, Grzegorz Jamróz, Rafał Kucharski,
- Abstract summary: Autonomous vehicles (AVs) using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization may destabilize traffic environments.
Our experiments with standard MARL algorithms reveal that, even in trivial cases, policies often fail to converge to an optimal solution.
Future research must prioritize realistic benchmarks, cautious deployment strategies, and tools for monitoring and regulating AV routing behaviors.
- Score: 0.0
- License:
- Abstract: Autonomous vehicles (AVs) using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization may destabilize traffic environments, with human drivers possibly experiencing longer travel times. We study this interaction by simulating human drivers and AVs. Our experiments with standard MARL algorithms reveal that, even in trivial cases, policies often fail to converge to an optimal solution or require long training periods. The problem is amplified by the fact that we cannot rely entirely on simulated training, as there are no accurate models of human routing behavior. At the same time, real-world training in cities risks destabilizing urban traffic systems, increasing externalities, such as $CO_2$ emissions, and introducing non-stationarity as human drivers adapt unpredictably to AV behaviors. Centralization can improve convergence in some cases, however, it raises privacy concerns for the travelers' destination data. In this position paper, we argue that future research must prioritize realistic benchmarks, cautious deployment strategies, and tools for monitoring and regulating AV routing behaviors to ensure sustainable and equitable urban mobility systems.
Related papers
- Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding [2.9685635948300004]
We propose a novel state representation for Reinforcement Learning (RL) agents centered around the information perceivable by an autonomous agent.
Our findings pave the way for more robust and reliable autonomous navigation strategies.
arXiv Detail & Related papers (2024-07-05T08:34:49Z) - Learning Realistic Traffic Agents in Closed-loop [36.38063449192355]
Reinforcement learning (RL) can train traffic agents to avoid infractions, but using RL alone results in unhuman-like driving behaviors.
We propose Reinforcing Traffic Rules (RTR) to match expert demonstrations under a traffic compliance constraint.
Our experiments show that RTR learns more realistic and generalizable traffic simulation policies.
arXiv Detail & Related papers (2023-11-02T16:55:23Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
We show how the model can be inverted to estimate driver preferences from naturalistic traffic data.
One distinct advantage of our approach is the drastically reduced computational burden.
arXiv Detail & Related papers (2021-05-05T01:20:03Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
We introduce a model-free, deep reinforcement learning approach to generate automated human-like driving policies.
We study a static obstacle avoidance task on a two-lane highway road in simulation.
We demonstrate that our approach leads to human-like driving policies.
arXiv Detail & Related papers (2020-06-07T18:20:33Z) - Decoding pedestrian and automated vehicle interactions using immersive
virtual reality and interpretable deep learning [6.982614422666432]
This study investigates pedestrian crossing behaviour, as an important element of urban dynamics that is expected to be affected by the presence of automated vehicles.
Pedestrian wait time behaviour is then analyzed using a data-driven Cox Proportional Hazards (CPH) model.
Results show that the presence of automated vehicles on roads, wider lane widths, high density on roads, limited sight distance, and lack of walking habits are the main contributing factors to longer wait times.
arXiv Detail & Related papers (2020-02-18T01:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.