論文の概要: Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand
- arxiv url: http://arxiv.org/abs/2505.17738v1
- Date: Fri, 23 May 2025 11:02:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.017119
- Title: Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand
- Title(参考訳): 能動探索におけるニューロモルフィック原始受容信号を用いた物体分類:ソフトな擬人化ハンドによる検証
- Authors: Fengyi Wang, Xiangyu Fu, Nitish Thakor, Gordon Cheng,
- Abstract要約: プロプリオセプションは、物体の3D構造を知覚する上で重要な役割を担っている。
プロプリオセプションは人工システムでは比較的未発見である。
ソフトな人型ロボットハンドを統合する新しいプラットフォームを提案する。
- 参考スコア(独自算出の注目度): 5.159808922904934
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Proprioception, a key sensory modality in haptic perception, plays a vital role in perceiving the 3D structure of objects by providing feedback on the position and movement of body parts. The restoration of proprioceptive sensation is crucial for enabling in-hand manipulation and natural control in the prosthetic hand. Despite its importance, proprioceptive sensation is relatively unexplored in an artificial system. In this work, we introduce a novel platform that integrates a soft anthropomorphic robot hand (QB SoftHand) with flexible proprioceptive sensors and a classifier that utilizes a hybrid spiking neural network with different types of spiking neurons to interpret neuromorphic proprioceptive signals encoded by a biological muscle spindle model. The encoding scheme and the classifier are implemented and tested on the datasets we collected in the active exploration of ten objects from the YCB benchmark. Our results indicate that the classifier achieves more accurate inferences than existing learning approaches, especially in the early stage of the exploration. This system holds the potential for development in the areas of haptic feedback and neural prosthetics.
- Abstract(参考訳): 触覚知覚における重要な感覚モダリティであるプロプリオセプションは、身体部分の位置と動きに対するフィードバックを提供することで、物体の3次元構造を知覚する上で重要な役割を担っている。
触覚の回復は、義手において手動操作と自然な制御を可能にするために重要である。
その重要性にもかかわらず、生殖受容感覚は人工システムでは比較的研究されていない。
本研究では,軟質人為的ロボットハンド(QB SoftHand)を柔軟な受容性センサーと統合する新しいプラットフォームと,異なる種類のスパイキングニューロンを持つハイブリッドスパイキングニューラルネットワークを用いて,生体筋スピンドルモデルによって符号化された神経形受容性信号を解釈する分類器を導入する。
符号化方式と分類器は、YCBベンチマークから収集した10個のオブジェクトのアクティブな探索で収集したデータセット上で実装され、テストされる。
以上の結果から,既存の学習手法,特に探索の初期段階において,分類器がより正確な推論を達成できることが示唆された。
本システムは,触覚フィードバックや神経義肢の分野での発達の可能性を秘めている。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - A Fuzzy-based Approach to Predict Human Interaction by Functional Near-Infrared Spectroscopy [25.185426359719454]
本稿では、心理学研究におけるニューラルモデルの解釈可能性と有効性に対する新しい計算手法であるファジィベースの注意層(ファジィ注意層)について紹介する。
ファジィロジックを活用することで、ファジィ注意層は神経活動の解釈可能なパターンを学習し識別することができる。
論文 参考訳(メタデータ) (2024-09-26T09:20:12Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Bayesian and Neural Inference on LSTM-based Object Recognition from
Tactile and Kinesthetic Information [0.0]
触覚知覚は触覚(触覚や審美感覚など)に遭遇する感覚のモーダル性を含む
本論文は多モーダル物体認識に焦点をあて,触覚と審美に基づく分類結果を融合する解析的およびデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2023-06-10T12:29:23Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
皮質補綴は視覚野に移植された装置で、電気的にニューロンを刺激することで失った視力を回復しようとする。
現在、これらのデバイスが提供する視覚は限られており、刺激による視覚知覚を正確に予測することはオープンな課題である。
我々は、視覚システムの有望なモデルとして登場した「脳様」畳み込みニューラルネットワーク(CNN)を活用することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-09-27T17:33:19Z) - Learnable latent embeddings for joint behavioral and neural analysis [3.6062449190184136]
CEBRAは、空間のマッピング、複雑なキネマティックな特徴の発見、視覚野からの自然映画の高速かつ高精度な復号化に利用できることを示す。
我々は、その精度を検証し、カルシウムと電気生理学の両方のデータセット、感覚と運動のタスク、そして種全体にわたる単純または複雑な振る舞いにその有用性を実証する。
論文 参考訳(メタデータ) (2022-04-01T19:19:33Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - A Portable, Self-Contained Neuroprosthetic Hand with Deep Learning-Based
Finger Control [18.09497225404653]
深層学習に基づく制御を組み込んだ神経補綴ハンドの実装について述べる。
ニューラルデコーダは、リカレントニューラルネットワーク(RNN)アーキテクチャに基づいて設計され、NVIDIA Jetson Nano上にデプロイされる。
これにより、個々の指の動きをリアルタイムに制御するポータブルで自己完結型ユニットとして、神経義手の実装が可能になる。
論文 参考訳(メタデータ) (2021-03-24T19:11:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。