論文の概要: BLAST: Balanced Sampling Time Series Corpus for Universal Forecasting Models
- arxiv url: http://arxiv.org/abs/2505.17871v1
- Date: Fri, 23 May 2025 13:20:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.101825
- Title: BLAST: Balanced Sampling Time Series Corpus for Universal Forecasting Models
- Title(参考訳): BLAST:ユニバーサル予測モデルのためのバランスの取れたサンプリング時系列コーパス
- Authors: Zezhi Shao, Yujie Li, Fei Wang, Chengqing Yu, Yisong Fu, Tangwen Qian, Bin Xu, Boyu Diao, Yongjun Xu, Xueqi Cheng,
- Abstract要約: 本稿では,バランスの取れたサンプリング戦略を通じて,データの多様性を高めるための新しい事前学習コーパスを提案する。
BLTは、公開データセットからの321億の観測を取り入れ、時系列パターンを特徴付けるために、包括的な統計メトリクススイートを使用している。
本研究は, 予測タスクにおけるトレーニング効率とモデル性能の両面において, データの多様性が重要な役割を担っていることを明らかにする。
- 参考スコア(独自算出の注目度): 47.66064662912721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of universal time series forecasting models has revolutionized zero-shot forecasting across diverse domains, yet the critical role of data diversity in training these models remains underexplored. Existing large-scale time series datasets often suffer from inherent biases and imbalanced distributions, leading to suboptimal model performance and generalization. To address this gap, we introduce BLAST, a novel pre-training corpus designed to enhance data diversity through a balanced sampling strategy. First, BLAST incorporates 321 billion observations from publicly available datasets and employs a comprehensive suite of statistical metrics to characterize time series patterns. Then, to facilitate pattern-oriented sampling, the data is implicitly clustered using grid-based partitioning. Furthermore, by integrating grid sampling and grid mixup techniques, BLAST ensures a balanced and representative coverage of diverse patterns. Experimental results demonstrate that models pre-trained on BLAST achieve state-of-the-art performance with a fraction of the computational resources and training tokens required by existing methods. Our findings highlight the pivotal role of data diversity in improving both training efficiency and model performance for the universal forecasting task.
- Abstract(参考訳): ユニバーサル時系列予測モデルの出現は、さまざまな領域にわたるゼロショット予測に革命をもたらしたが、これらのモデルのトレーニングにおけるデータ多様性の重要な役割は、まだ解明されていない。
既存の大規模時系列データセットは、しばしば固有のバイアスと不均衡な分布に悩まされ、最適以下のモデル性能と一般化をもたらす。
このギャップに対処するために、バランスの取れたサンプリング戦略を通じてデータの多様性を高めるために設計された、新しい事前学習コーパスBLASTを導入する。
まず、BLASTは公開データセットから321億の観測結果を取り込んでおり、時系列パターンを特徴づけるために、包括的な統計メトリクススイートを使用している。
次に、パターン指向サンプリングを容易にするために、グリッドベースのパーティショニングを使用してデータを暗黙的にクラスタ化する。
さらに、グリッドサンプリングとグリッドミックスアップ技術を統合することにより、BLASTは多様なパターンのバランスよく代表的なカバレッジを確保する。
実験結果から,BLAST 上で事前学習したモデルは,計算資源のごく一部と既存の手法が必要とする訓練トークンを用いて,最先端の性能を達成することが示された。
本研究は, 予測タスクにおけるトレーニング効率とモデル性能の両面において, データの多様性が重要な役割を担っていることを明らかにする。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - ReAugment: Model Zoo-Guided RL for Few-Shot Time Series Augmentation and Forecasting [74.00765474305288]
本稿では,時系列データ拡張のための強化学習(RL)の試験的検討を行う。
我々の手法であるReAugmentは、トレーニングセットのどの部分が拡張されるべきか、どのように拡張を行うべきか、RLがプロセスにどのような利点をもたらすのか、という3つの重要な問題に取り組む。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - A novel decomposed-ensemble time series forecasting framework: capturing
underlying volatility information [6.590038231008498]
本稿では, 時系列予測のパラダイムを提案する。このパラダイムは, 分解と, 時系列の揺らぎ情報を取得する能力を統合するものである。
各サブモードの数値データとボラティリティ情報の両方を利用してニューラルネットワークを訓練する。
このネットワークはサブモデムの情報予測に長けており、全てのサブモデムの予測を集約して最終的な出力を生成する。
論文 参考訳(メタデータ) (2023-10-13T01:50:43Z) - Ensembles of Randomized NNs for Pattern-based Time Series Forecasting [0.0]
本稿では,ランダム化ニューラルネットワークに基づくアンサンブル予測手法を提案する。
時系列のパターンに基づく表現は、複数の季節の時系列を予測するのに適している。
4つの実世界の予測問題に対するケーススタディにより,提案手法の有効性と性能が検証された。
論文 参考訳(メタデータ) (2021-07-08T20:13:50Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
自動回帰(AR)や季節ARのような単純なデータ生成プロセス(DGP)からカオスロジスティックマップ、自己興奮型閾値自動回帰、マッキーグラス方程式といった複雑なDGPまで、時系列をシミュレートする。
データセットの長さと系列数は、さまざまなシナリオで変化します。
我々はこれらのデータセットに対して,Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) Model, Light Gradient Boosting Models (LGBM)などの大域的予測モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-23T04:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。