Thinking Fast and Right: Balancing Accuracy and Reasoning Length with Adaptive Rewards
- URL: http://arxiv.org/abs/2505.18298v1
- Date: Fri, 23 May 2025 18:44:46 GMT
- Title: Thinking Fast and Right: Balancing Accuracy and Reasoning Length with Adaptive Rewards
- Authors: Jinyan Su, Claire Cardie,
- Abstract summary: We propose an adaptive reward-shaping method for large language models.<n>Our method dynamically adjusts the trade-off between accuracy and response length based on model performance.<n> Experiments show that our approach consistently and dramatically reduces reasoning length while largely maintaining accuracy.
- Score: 17.829990749622496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated strong reasoning abilities in mathematical tasks, often enhanced through reinforcement learning (RL). However, RL-trained models frequently produce unnecessarily long reasoning traces -- even for simple queries -- leading to increased inference costs and latency. While recent approaches attempt to control verbosity by adding length penalties to the reward function, these methods rely on fixed penalty terms that are hard to tune and cannot adapt as the model's reasoning capability evolves, limiting their effectiveness. In this work, we propose an adaptive reward-shaping method that enables LLMs to "think fast and right" -- producing concise outputs without sacrificing correctness. Our method dynamically adjusts the reward trade-off between accuracy and response length based on model performance: when accuracy is high, the length penalty increases to encourage faster length reduction; when accuracy drops, the penalty is relaxed to preserve correctness. This adaptive reward accelerates early-stage length reduction while avoiding over-compression in later stages. Experiments across multiple datasets show that our approach consistently and dramatically reduces reasoning length while largely maintaining accuracy, offering a new direction for cost-efficient adaptive reasoning in large-scale language models.
Related papers
- CoLD: Counterfactually-Guided Length Debiasing for Process Reward Models [29.95434387343843]
We propose a unified framework that mitigates length bias through three components.<n>CoLD consistently reduces reward-length correlation, improves accuracy in step selection, and encourages more concise, logically valid reasoning.
arXiv Detail & Related papers (2025-07-21T15:07:59Z) - AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control [18.273777938294327]
Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts.<n>We introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning.<n>We show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy.
arXiv Detail & Related papers (2025-06-25T06:29:18Z) - ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization [16.51303604678232]
Reasoning Compression ThroUgh Stepwise Trials (ReCUT) is a novel method aimed at balancing the accuracy and length of reasoning trajectory.<n> Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%.
arXiv Detail & Related papers (2025-06-12T15:43:01Z) - Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models [68.96619605651155]
Large reasoning models (LRMs) may drastically increase the output length due to overthinking.<n>We propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns.<n>Our method achieves up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
arXiv Detail & Related papers (2025-05-27T20:59:29Z) - Learn to Reason Efficiently with Adaptive Length-based Reward Shaping [23.626013831589212]
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL)<n>We present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping.<n>Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency.
arXiv Detail & Related papers (2025-05-21T15:03:26Z) - Bias Fitting to Mitigate Length Bias of Reward Model in RLHF [81.44256822500257]
Reinforcement Learning from Human Feedback relies on reward models to align large language models with human preferences.<n>We propose FiMi-RM, a framework that autonomously learns and corrects underlying bias patterns.<n> Experimental results demonstrate that FiMi-RM achieves a more balanced length-reward distribution.
arXiv Detail & Related papers (2025-05-19T08:29:28Z) - Efficient RL Training for Reasoning Models via Length-Aware Optimization [108.88337262486819]
We propose three critical reward designs integrated directly into the reinforcement learning process of large reasoning models.<n>Our method significantly decreases response length while maintaining or even improving performance.
arXiv Detail & Related papers (2025-05-18T07:46:43Z) - Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs [52.405085773954596]
We find that large language models (LLMs) tend to overthink simple problems, generating unnecessarily long outputs, and underthink harder ones.<n>This indicates that models might misjudge problem difficulty and fail to calibrate their response length appropriately.<n> Experiments show that the generation length can be significantly reduced while maintaining acceptable accuracy.
arXiv Detail & Related papers (2025-04-30T18:48:06Z) - ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning [1.0416697066889342]
We propose a simple yet effective reinforcement learning method that enables reasoning models to learn their own optimal CoT lengths without manual supervision.<n>ShorterBetter achieves 50%-80% reduction in output lengths in both in-domain and out-of-domain reasoning tasks.<n>Our reasoning trace analysis shows that ShorterBetter refines the structure of the reasoning traces by reducing unnecessary repetition, excessive self-verification, and over-exploration of alternatives.
arXiv Detail & Related papers (2025-04-30T07:04:19Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Large Language Models (LLMs) employ Chain-of-Thought (CoT) reasoning to deconstruct complex problems.<n>This paper argues that longer CoTs are often presumed superior, arguing that longer is not always better.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning [98.3430004984531]
We propose Length-Harmonizing Fine-Tuning (O1-Pruner) to minimize reasoning overhead while maintaining accuracy.<n>Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner.
arXiv Detail & Related papers (2025-01-22T01:35:11Z) - A Long Way to Go: Investigating Length Correlations in RLHF [59.49656695716066]
This paper demonstrates, on three diverse settings, that optimizing for response length is a significant factor behind RLHF.
We find improvements in reward to largely be driven by increasing response length, instead of other features.
Even a purely length-based reward reproduces most downstream RLHF improvements over supervised fine-tuned models.
arXiv Detail & Related papers (2023-10-05T17:38:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.