Beyond Self-Repellent Kernels: History-Driven Target Towards Efficient Nonlinear MCMC on General Graphs
- URL: http://arxiv.org/abs/2505.18300v3
- Date: Sun, 27 Jul 2025 00:40:47 GMT
- Title: Beyond Self-Repellent Kernels: History-Driven Target Towards Efficient Nonlinear MCMC on General Graphs
- Authors: Jie Hu, Yi-Ting Ma, Do Young Eun,
- Abstract summary: We propose a history-driven target (HDT) framework in Markov Chain Monte Carlo (MCMC) to improve any random walk algorithm on discrete state spaces.<n>We show that HDT preserves lightweight implementation by requiring only local information between the current and proposed states.<n>Experiments in graph sampling demonstrate consistent performance gains, and a memory-efficient Least Recently Used (LRU) cache ensures scalability to large general graphs.
- Score: 7.434126318858966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a history-driven target (HDT) framework in Markov Chain Monte Carlo (MCMC) to improve any random walk algorithm on discrete state spaces, such as general undirected graphs, for efficient sampling from target distribution $\boldsymbol{\mu}$. With broad applications in network science and distributed optimization, recent innovations like the self-repellent random walk (SRRW) achieve near-zero variance by prioritizing under-sampled states through transition kernel modifications based on past visit frequencies. However, SRRW's reliance on explicit computation of transition probabilities for all neighbors at each step introduces substantial computational overhead, while its strict dependence on time-reversible Markov chains excludes advanced non-reversible MCMC methods. To overcome these limitations, instead of direct modification of transition kernel, HDT introduces a history-dependent target distribution $\boldsymbol{\pi}[\mathbf{x}]$ to replace the original target $\boldsymbol{\mu}$ in any graph sampler, where $\mathbf{x}$ represents the empirical measure of past visits. This design preserves lightweight implementation by requiring only local information between the current and proposed states and achieves compatibility with both reversible and non-reversible MCMC samplers, while retaining unbiased samples with target distribution $\boldsymbol{\mu}$ and near-zero variance performance. Extensive experiments in graph sampling demonstrate consistent performance gains, and a memory-efficient Least Recently Used (LRU) cache ensures scalability to large general graphs.
Related papers
- Scaling up Dynamic Edge Partition Models via Stochastic Gradient MCMC [33.08344607564694]
The edge partition model (EPM) is a generative model for extracting an overlapping community structure from static graph-structured data.
Despite having many attractive properties, inference in the EPM is typically performed using Markov chain Monte Carlo (MCMC) methods that prevent it from being applied to massive network data.
arXiv Detail & Related papers (2024-02-29T15:19:35Z) - Self-Repellent Random Walks on General Graphs -- Achieving Minimal
Sampling Variance via Nonlinear Markov Chains [11.3631620309434]
We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration.
Given any Markov chain corresponding to a target probability distribution, we design a self-repellent random walk (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes.
For a class of SRRWs parameterized by a positive real alpha, we prove that the empirical distribution of the process converges almost surely to the the target (
arXiv Detail & Related papers (2023-05-08T23:59:09Z) - Stochastic Gradient Descent under Markovian Sampling Schemes [3.04585143845864]
We study a variation of vanilla gradient descent where the only has access to a Markovian sampling scheme.
We focus on obtaining rates of convergence under the least restrictive assumptions possible on the underlying Markov chain.
arXiv Detail & Related papers (2023-02-28T09:18:00Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic
Gradient MCMC [37.768023232677244]
Hamiltonian Monte Carlo (SGHMC) is an efficient method for sampling from continuous distributions.
We propose a novel second-order SG-MCMC algorithm---AMAGOLD---that infrequently uses Metropolis-Hastings (M-H) corrections to remove bias.
We prove AMAGOLD converges to the target distribution with a fixed, rather than a diminishing, step size, and that its convergence rate is at most a constant factor slower than a full-batch baseline.
arXiv Detail & Related papers (2020-02-29T06:57:43Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
We propose a non-uniform subsampling scheme to improve the sampling accuracy.
EWSG is designed so that a non-uniform gradient-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method.
In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index.
arXiv Detail & Related papers (2020-02-20T18:56:18Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z) - Targeted stochastic gradient Markov chain Monte Carlo for hidden Markov models with rare latent states [48.705095800341944]
Markov chain Monte Carlo (MCMC) algorithms for hidden Markov models often rely on the forward-backward sampler.
This makes them computationally slow as the length of the time series increases, motivating the development of sub-sampling-based approaches.
We propose a targeted sub-sampling approach that over-samples observations corresponding to rare latent states when calculating the gradient of parameters associated with them.
arXiv Detail & Related papers (2018-10-31T17:44:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.