CrashAgent: Crash Scenario Generation via Multi-modal Reasoning
- URL: http://arxiv.org/abs/2505.18341v1
- Date: Fri, 23 May 2025 19:55:32 GMT
- Title: CrashAgent: Crash Scenario Generation via Multi-modal Reasoning
- Authors: Miao Li, Wenhao Ding, Haohong Lin, Yiqi Lyu, Yihang Yao, Yuyou Zhang, Ding Zhao,
- Abstract summary: We introduce CrashAgent, a framework designed to interpret multi-modal real-world traffic crash reports.<n>We evaluate the generated crash scenarios from multiple perspectives, including the accuracy of layout reconstruction, collision rate, and diversity.<n>The resulting high-quality and large-scale crash dataset will be publicly available to support the development of safe driving algorithms.
- Score: 34.42773413989066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training and evaluating autonomous driving algorithms requires a diverse range of scenarios. However, most available datasets predominantly consist of normal driving behaviors demonstrated by human drivers, resulting in a limited number of safety-critical cases. This imbalance, often referred to as a long-tail distribution, restricts the ability of driving algorithms to learn from crucial scenarios involving risk or failure, scenarios that are essential for humans to develop driving skills efficiently. To generate such scenarios, we utilize Multi-modal Large Language Models to convert crash reports of accidents into a structured scenario format, which can be directly executed within simulations. Specifically, we introduce CrashAgent, a multi-agent framework designed to interpret multi-modal real-world traffic crash reports for the generation of both road layouts and the behaviors of the ego vehicle and surrounding traffic participants. We comprehensively evaluate the generated crash scenarios from multiple perspectives, including the accuracy of layout reconstruction, collision rate, and diversity. The resulting high-quality and large-scale crash dataset will be publicly available to support the development of safe driving algorithms in handling safety-critical situations.
Related papers
- World Model-Based End-to-End Scene Generation for Accident Anticipation in Autonomous Driving [1.8277374107085946]
We propose a comprehensive framework combining generative augmentation scene with adaptive temporal reasoning.<n>We develop a video generation pipeline that utilizes a world model by guided domain-informed prompts to create high-resolution, statistically consistent driving scenarios.<n>In parallel, we construct a dynamic prediction model that encodes-temporal relationships through strengthened graph convolutions and dilated temporal operators.
arXiv Detail & Related papers (2025-07-17T03:34:54Z) - Learning collision risk proactively from naturalistic driving data at scale [3.1457219084519004]
This study introduces the Generalised Surrogate Safety Measure (GSSM)<n>GSSM learns collision risk from naturalistic driving without the need for crash or risk labels.<n> Diverse data from naturalistic driving, including motion kinematics, weather, lighting, etc., are used to train multiple GSSMs.<n>A basic GSSM using only instantaneous motion kinematics achieves an area under the precision-recall curve of 0.9 and secures a median time advance of 2.6 seconds to prevent potential collisions.
arXiv Detail & Related papers (2025-05-19T07:22:32Z) - Towards Reliable and Interpretable Traffic Crash Pattern Prediction and Safety Interventions Using Customized Large Language Models [14.53510262691888]
TrafficSafe is a framework that adapts to reframe crash prediction and feature attribution as text-level reasoning.<n>Alcohol-impaired driving is the leading factor in severe crashes.<n>TrafficSafe highlights pivotal features during model training guiding strategic crash data collection improvements.
arXiv Detail & Related papers (2025-05-18T21:02:30Z) - DeepMF: Deep Motion Factorization for Closed-Loop Safety-Critical Driving Scenario Simulation [11.059102404333885]
Safety-critical traffic scenarios are of great practical relevance to evaluating the robustness of autonomous driving systems.<n>Existing algorithms for generating safety-critical scenarios rely on snippets of previously recorded traffic events.<n>In this paper, we propose the Deep Motion Factorization framework, which extends static safety-critical driving scenario generation to closed-loop and interactive adversarial traffic simulation.
arXiv Detail & Related papers (2024-12-23T11:30:24Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Enhanced Transfer Learning for Autonomous Driving with Systematic
Accident Simulation [3.2456691142503256]
We show that transfer learning on simulated data sets provide better generalization and collision avoidance.
Our results illustrate that information from a model trained on simulated data can be inferred to a model trained on real-world data.
arXiv Detail & Related papers (2020-07-23T17:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.