X-MethaneWet: A Cross-scale Global Wetland Methane Emission Benchmark Dataset for Advancing Science Discovery with AI
- URL: http://arxiv.org/abs/2505.18355v1
- Date: Fri, 23 May 2025 20:24:09 GMT
- Title: X-MethaneWet: A Cross-scale Global Wetland Methane Emission Benchmark Dataset for Advancing Science Discovery with AI
- Authors: Yiming Sun, Shuo Chen, Shengyu Chen, Chonghao Qiu, Licheng Liu, Youmi Oh, Sparkle L. Malone, Gavin McNicol, Qianlai Zhuang, Chris Smith, Yiqun Xie, Xiaowei Jia,
- Abstract summary: Methane (CH$_4$) is the second most powerful greenhouse gas after carbon dioxide and plays a crucial role in climate change.<n>We introduce the first-of-its-kind cross-scale global wetland methane benchmark dataset (X-MethaneWet)<n>This dataset can offer opportunities for improving global wetland CH$_4$ modeling and science discovery with new AI algorithms.
- Score: 15.813459313530625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methane (CH$_4$) is the second most powerful greenhouse gas after carbon dioxide and plays a crucial role in climate change due to its high global warming potential. Accurately modeling CH$_4$ fluxes across the globe and at fine temporal scales is essential for understanding its spatial and temporal variability and developing effective mitigation strategies. In this work, we introduce the first-of-its-kind cross-scale global wetland methane benchmark dataset (X-MethaneWet), which synthesizes physics-based model simulation data from TEM-MDM and the real-world observation data from FLUXNET-CH$_4$. This dataset can offer opportunities for improving global wetland CH$_4$ modeling and science discovery with new AI algorithms. To set up AI model baselines for methane flux prediction, we evaluate the performance of various sequential deep learning models on X-MethaneWet. Furthermore, we explore four different transfer learning techniques to leverage simulated data from TEM-MDM to improve the generalization of deep learning models on real-world FLUXNET-CH$_4$ observations. Our extensive experiments demonstrate the effectiveness of these approaches, highlighting their potential for advancing methane emission modeling and contributing to the development of more accurate and scalable AI-driven climate models.
Related papers
- Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies [57.23978190717341]
We develop a Neural Operator (FNO) based model for real-time, high-resolution simulation of $CO$ plume migration.<n>The model is trained on a comprehensive dataset generated from realistic subsurface parameters.<n>We present various strategies for improving the reliability of predictions from the model, which is crucial while assessing actual geological sites.
arXiv Detail & Related papers (2025-03-14T02:58:24Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Self Supervised Vision for Climate Downscaling [16.407155686685666]
Future projections for climate change research are based on Earth System Models (ESMs), the computer models that simulate the Earth's climate system.
ESMs provide a framework to integrate various physical systems, but their output is bound by the enormous computational resources required for running and archiving higher-resolution simulations.
In this work, we present a deep-learning model for downscaling ESM simulation data that does not require high-resolution ground truth data for model optimization.
arXiv Detail & Related papers (2024-01-09T10:20:49Z) - Development and Evaluation of Ensemble Learning-based Environmental
Methane Detection and Intensity Prediction Models [6.694954044418315]
Several data-driven machine learning (ML) models were tested to identify fugitive CH4 and its related intensity in the affected areas.
We used the ensemble learning method to determine the best-performing weighted ensemble ML models built upon several weaker lower-layer ML models.
arXiv Detail & Related papers (2023-12-18T01:52:59Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Machine Learning Driven Sensitivity Analysis of E3SM Land Model
Parameters for Wetland Methane Emissions [12.826828430320843]
Methane (CH4) is the second most critical greenhouse gas after carbon dioxide, contributing to 16-25% of the observed atmospheric warming.
Sensitivity Analysis (SA) can help identify critical parameters for methane emission and achieve reduced biases and uncertainties in future projections.
This study performs SA for 19 selected parameters responsible for critical biogeochemical processes in the methane module of the Energy Exascale Earth System Model (E3SM) land model (ELM)
arXiv Detail & Related papers (2023-12-05T14:16:13Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.