An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems
- URL: http://arxiv.org/abs/2505.18397v1
- Date: Fri, 23 May 2025 22:05:19 GMT
- Title: An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems
- Authors: Fangqiao Tian, An Luo, Jin Du, Xun Xian, Robert Specht, Ganghua Wang, Xuan Bi, Jiawei Zhou, Jayanth Srinivasa, Ashish Kundu, Charles Fleming, Rui Zhang, Zirui Liu, Mingyi Hong, Jie Ding,
- Abstract summary: Multi-agent AI systems (MAS) offer a promising framework for distributed intelligence, enabling collaborative reasoning, planning, and decision-making across autonomous agents.<n>This paper provides a systematic outlook on the current opportunities and challenges of MAS, drawing insights from recent advances in large language models (LLMs), federated optimization, and human-AI interaction.
- Score: 40.53603737069306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent AI systems (MAS) offer a promising framework for distributed intelligence, enabling collaborative reasoning, planning, and decision-making across autonomous agents. This paper provides a systematic outlook on the current opportunities and challenges of MAS, drawing insights from recent advances in large language models (LLMs), federated optimization, and human-AI interaction. We formalize key concepts including agent topology, coordination protocols, and shared objectives, and identify major risks such as dependency, misalignment, and vulnerabilities arising from training data overlap. Through a biologically inspired simulation and comprehensive theoretical framing, we highlight critical pathways for developing robust, scalable, and secure MAS in real-world settings.
Related papers
- From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario [3.5262044630932254]
Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints.<n>Despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited.
arXiv Detail & Related papers (2025-08-06T17:54:10Z) - When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems [78.04679174291329]
We introduce a proof-of-concept to simulate the risks of malicious multi-agent systems (MAS)<n>We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud.<n>Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones.
arXiv Detail & Related papers (2025-07-19T15:17:30Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
We present a system-level anomaly detection framework tailored for large language model (LLM)-based multi-agent systems (MAS)<n>We propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels.<n>Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning.
arXiv Detail & Related papers (2025-05-30T04:25:19Z) - The Traitors: Deception and Trust in Multi-Agent Language Model Simulations [0.0]
We introduce The Traitors, a multi-agent simulation framework inspired by social deduction games.<n>We develop a suite of evaluation metrics capturing deception success, trust dynamics, and collective inference quality.<n>Our initial experiments across DeepSeek-V3, GPT-4o-mini, and GPT-4o (10 runs per model) reveal a notable asymmetry.
arXiv Detail & Related papers (2025-05-19T10:01:35Z) - PeerGuard: Defending Multi-Agent Systems Against Backdoor Attacks Through Mutual Reasoning [8.191214701984162]
Multi-agent systems leverage advanced AI models as autonomous agents that interact, cooperate, or compete to complete complex tasks.<n>Despite their growing importance, safety in multi-agent systems remains largely underexplored.<n>This work investigates backdoor vulnerabilities in multi-agent systems and proposes a defense mechanism based on agent interactions.
arXiv Detail & Related papers (2025-05-16T19:08:29Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP)<n>We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns.<n>We identify current limitations, emerging research opportunities, and potential transformative applications across industries.
arXiv Detail & Related papers (2025-04-26T03:43:03Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.<n>LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - A Comprehensive Survey on Multi-Agent Cooperative Decision-Making: Scenarios, Approaches, Challenges and Perspectives [6.277211882332452]
Multi-agent cooperative decision-making involves multiple agents working together to complete established tasks and achieve specific objectives.<n>These techniques are widely applicable in real-world scenarios such as autonomous driving, drone navigation, disaster rescue, and simulated military confrontations.
arXiv Detail & Related papers (2025-03-17T17:45:46Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address real-world challenges.<n>Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving.<n>This survey provides a systematic examination of how EMAS can benefit from these generative capabilities.
arXiv Detail & Related papers (2025-02-17T07:39:34Z) - Interpretable Concept-based Deep Learning Framework for Multimodal Human Behavior Modeling [5.954573238057435]
EU General Data Protection Regulation requires any high-risk AI systems to be sufficiently interpretable.<n>Existing explainable methods often compromise between interpretability and performance.<n>We propose a novel and generalizable framework, namely the Attention-Guided Concept Model (AGCM)<n>AGCM provides learnable conceptual explanations by identifying what concepts that lead to the predictions and where they are observed.
arXiv Detail & Related papers (2025-02-14T13:15:21Z) - Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms [6.285314639722078]
We argue that AI agents should be empowered to dynamically adjust their objectives.<n>We call for a shift toward the emergent, self-organizing, and context-aware nature of these systems.
arXiv Detail & Related papers (2025-02-05T22:20:15Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - Coherence-Driven Multimodal Safety Dialogue with Active Learning for Embodied Agents [23.960719833886984]
M-CoDAL is a multimodal-dialogue system specifically designed for embodied agents to better understand and communicate in safety-critical situations.<n>Our approach is evaluated using a newly created multimodal dataset comprising 1K safety violations extracted from 2K Reddit images.<n>Results with this dataset demonstrate that our approach improves resolution of safety situations, user sentiment, as well as safety of the conversation.
arXiv Detail & Related papers (2024-10-18T03:26:06Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.