Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review
- URL: http://arxiv.org/abs/2502.11518v1
- Date: Mon, 17 Feb 2025 07:39:34 GMT
- Title: Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review
- Authors: Di Wu, Xian Wei, Guang Chen, Hao Shen, Xiangfeng Wang, Wenhao Li, Bo Jin,
- Abstract summary: Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address real-world challenges.<n>Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving.<n>This survey provides a systematic examination of how EMAS can benefit from these generative capabilities.
- Score: 32.73711802351707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
Related papers
- Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP)
We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns.
We identify current limitations, emerging research opportunities, and potential transformative applications across industries.
arXiv Detail & Related papers (2025-04-26T03:43:03Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.
Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
arXiv Detail & Related papers (2025-03-13T06:17:50Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Integrating Artificial Intelligence into Operating Systems: A Comprehensive Survey on Techniques, Applications, and Future Directions [16.28550500194823]
fusion of Artificial Intelligence with Operating Systems emerges as a critical frontier for innovation.<n>Current status of AI-OS integration, accentuating its pivotal role in steering the evolution of advanced computing paradigms.<n>Future prospects of Intelligent Operating Systems, debating how groundbreaking OS designs will usher in novel possibilities.
arXiv Detail & Related papers (2024-07-19T05:29:34Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM)
Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys.
arXiv Detail & Related papers (2024-07-13T22:46:02Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - A Survey on Context-Aware Multi-Agent Systems: Techniques, Challenges and Future Directions [1.0488897291370285]
Research interest in autonomous agents is on the rise as an emerging topic.<n>The challenge lies in enabling these agents to learn, reason, and navigate uncertainties in dynamic environments.<n>Context awareness emerges as a pivotal element in fortifying multi-agent systems.
arXiv Detail & Related papers (2024-02-03T00:27:22Z) - When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges [50.280704114978384]
Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text.
Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.