Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications
- URL: http://arxiv.org/abs/2504.21030v1
- Date: Sat, 26 Apr 2025 03:43:03 GMT
- Title: Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications
- Authors: Naveen Krishnan,
- Abstract summary: This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP)<n>We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns.<n>We identify current limitations, emerging research opportunities, and potential transformative applications across industries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-agent systems represent a significant advancement in artificial intelligence, enabling complex problem-solving through coordinated specialized agents. However, these systems face fundamental challenges in context management, coordination efficiency, and scalable operation. This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP), addressing these challenges through standardized context sharing and coordination mechanisms. We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns. Through detailed implementation case studies across enterprise knowledge management, collaborative research, and distributed problem-solving domains, we demonstrate significant performance improvements compared to traditional approaches. Our evaluation methodology provides a systematic assessment framework with benchmark tasks and datasets specifically designed for multi-agent systems. We identify current limitations, emerging research opportunities, and potential transformative applications across industries. This work contributes to the evolution of more capable, collaborative, and context-aware artificial intelligence systems that can effectively address complex real-world challenges.
Related papers
- Position Paper: Towards Open Complex Human-AI Agents Collaboration System for Problem-Solving and Knowledge Management [0.48342038441006807]
This position paper critically surveys a broad spectrum of recent empirical developments on human-AI agents collaboration.<n>We propose a novel conceptual architecture that systematically interlinks the technical details of multi-agent coordination, knowledge management, cybernetic feedback loops, and higher-level control mechanisms.
arXiv Detail & Related papers (2025-04-24T05:57:03Z) - A Survey on (M)LLM-Based GUI Agents [62.57899977018417]
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction.
Recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms.
This survey identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control.
arXiv Detail & Related papers (2025-03-27T17:58:31Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.<n>Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
arXiv Detail & Related papers (2025-03-13T06:17:50Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.<n>This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
arXiv Detail & Related papers (2025-01-10T19:56:50Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
arXiv Detail & Related papers (2024-07-04T14:36:49Z) - Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence [0.0]
This paper introduces a transformative approach by organizing Large Language Models into community-based structures.
We investigate different organizational models-hierarchical, flat, dynamic, and federated-each presenting unique benefits and challenges for collaborative AI systems.
The implementation of such communities holds substantial promise for improve problem-solving capabilities in AI.
arXiv Detail & Related papers (2024-05-06T20:15:45Z) - Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and Language Models in Modern Organizations [0.0]
This article explores the influence of computational entities based on multi-agent systems theory (SMA) and large language models (LLM) on human user interaction.
In our approach we employ agents developed from large language models (LLM), each with distinct prototyping that considers behavioral elements.
We demonstrate the potential of developing agents useful for organizational strategies, based on multi-agent system theories (SMA) and innovative uses based on large language models (LLM based)
arXiv Detail & Related papers (2024-03-12T15:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.