Synthesizing and Adapting Error Correction Data for Mobile Large Language Model Applications
- URL: http://arxiv.org/abs/2505.18488v1
- Date: Sat, 24 May 2025 03:27:20 GMT
- Title: Synthesizing and Adapting Error Correction Data for Mobile Large Language Model Applications
- Authors: Yanxiang Zhang, Zheng Xu, Shanshan Wu, Yuanbo Zhang, Daniel Ramage,
- Abstract summary: We use large language models (LLMs) to synthesize a high-quality dataset of error correction pairs.<n>We then adapt the synthetic data distribution to match the mobile application domain by reweighting the samples.<n>We present best practices for mixing our synthetic data with other data sources to improve model performance on error correction in both offline evaluation and production live A/B testing.
- Score: 5.713077600587505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Error correction is an important capability when applying large language models (LLMs) to facilitate user typing on mobile devices. In this paper, we use LLMs to synthesize a high-quality dataset of error correction pairs to evaluate and improve LLMs for mobile applications. We first prompt LLMs with error correction domain knowledge to build a scalable and reliable addition to the existing data synthesis pipeline. We then adapt the synthetic data distribution to match the mobile application domain by reweighting the samples. The reweighting model is learnt by predicting (a handful of) live A/B test metrics when deploying LLMs in production, given the LLM performance on offline evaluation data and scores from a small privacy-preserving on-device language model. Finally, we present best practices for mixing our synthetic data with other data sources to improve model performance on error correction in both offline evaluation and production live A/B testing.
Related papers
- Augmenting Human-Annotated Training Data with Large Language Model Generation and Distillation in Open-Response Assessment [4.788487793976781]
Large Language Models (LLMs) can help automate text classification tasks at low cost and scale.<n>By contrast, human coding is generally more reliable but expensive to procure at scale.<n>We propose a hybrid solution to leverage the strengths of both.
arXiv Detail & Related papers (2025-01-15T20:13:46Z) - Learning to Verify Summary Facts with Fine-Grained LLM Feedback [15.007479147796403]
Training automatic summary fact verifiers often faces the challenge of a lack of human-labeled data.<n>We introduce FineSumFact, a large-scale dataset containing fine-grained factual feedback on summaries.
arXiv Detail & Related papers (2024-12-14T05:28:44Z) - Strategies for Improving NL-to-FOL Translation with LLMs: Data Generation, Incremental Fine-Tuning, and Verification [9.36179617282876]
We create a high-quality FOL-annotated subset of ProofWriter dataset using GPT-4o.
Our results show state-of-the-art performance for ProofWriter and ProntoQA datasets using ProofFOL on LLaMA-2 and Mistral models.
arXiv Detail & Related papers (2024-09-24T21:24:07Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs [30.179703001666173]
Factuality issue is a critical concern for Large Language Models (LLMs)
We propose GraphEval to evaluate an LLM's performance using a substantially large test dataset.
Test dataset is retrieved from a large knowledge graph with more than 10 million facts without expensive human efforts.
arXiv Detail & Related papers (2024-04-01T06:01:17Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
arXiv Detail & Related papers (2024-02-19T01:28:48Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.